Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахароза, транспорт

    Наш обычный пищевой сахар — сахароза — синтезируется во всех зеленых растениях и только в них, где служит в основном транспортной формой сахара сахароза образуется как в хлоропластах, так и в других местах, где накапливается крахмал, прекрасно растворяется в воде. Поскольку полуацетальные группы двух составляющих ее углеводных колец блокированы, она химически инертна ). Однако с термодинамической точки зрения сахароза является активным соединением, так как потенциал переноса ее глюкозильной группы составляет 29,3 кДж- моль . Транспорт сахара в форме дисахарида имеет для растений то преимущество, что дисахарид создает меньшее осмотическое давление, чем те же количества сахара, транспортируемого в виде моносахарида. [c.530]


    Транспорт веществ по флоэме-процесс более сложный, он не ограничен каким-то одним направлением растворенные органические вещества, главным образом сахароза, переносятся от мест нх синтеза к местам потребления и хранения независимо от того, где эти места расположены. На входе и выходе проводящих путей здесь тоже работают различные специализированные клетки. [c.177]

    В результате активного транспорта веществ в клетки-спутницы осмотический потенциал в них сильно понижается. Это стимулирует поступление в них воды путем осмоса, повышение давления и движение растворов (в том числе и раствора сахарозы) по механизму объемного по- [c.136]

    Флоэма (гл. 13) В основном органические питательные вещества, например сахароза Активный транспорт и осмос [c.98]

    Загрузка ситовидных трубок происходит здесь. Фотосинтезирующие клетки (мезофилл) образуют сахара, в основном сахарозу и другие водорастворимые органические вещества. Клетки-спутницы поглощают эти вещества по механизму активного транспорта, затрачивая при этом энергию. [c.138]

    Четкое представление о передвижении веществ от донора к акцептору по флоэме важно иметь при использовании системных пестицидов (инсектицидов, фунгицидов, гербицидов) и исследовании их эффективности. Системными называют пестициды, которые перемещаются в растении по ксилеме или флоэме либо по обеим системам одновременно. Пестициды, передвигающиеся только по ксилеме, не выходят за пределы листа, на который они нанесены. Они перераспределяются по всему растению лишь лосле их внесения в почву и поглощения корнями. Если инсектициды или фунгициды переносятся исключительно по флоэме, то они будут действовать эффективнее при распылении на листья. Такое защитное вещество будет перемещаться с потоком раствора сахарозы из листа к молодым развивающимся побегам и обеспечивать их постоянную защиту. Флоэмный транспорт обеспечивает также непрерыв<ное передвижение защитных веществ от заканчивак>щих рост листьев к новым развивающимся побегам до тех пор, пока эти вещества не разрушатся растением. Чтобы гербицид с максимальной эффективностью дейст -вовал против сорняков с хорошо раз1ВИтой системой вегетативно размножающихся столонов или корневищ, он должен перемещаться по флоэме. Такой гербицид передвигается из листа, места его нанесения, к акцепторам сахарозы в точках роста столонов или корневищ, что и приводит к их уничтожению. По существу одна из главных проблем, стоящая перед исследователями, создающими новые гербициды, заключается не в изыскании токсичных химикатов, а скорее в том, чтобы найти такой гербицид, который успевал бы доходить до точек роста столонов и корневищ, прежде чем он разрушит проводящую систему флоэмы. [c.245]


Рис. 8.5. А. Диаграмма, изображающая транспорт сахарозы в растении согласно гипотезе перетекания растворов. Рис. 8.5. А. Диаграмма, изображающая транспорт сахарозы в растении согласно гипотезе перетекания растворов.
    Эта теория хорошо согласуется с основными известными О флоэме данными флоэма находится под положительным давлением между донором и акцептором существуют как градиенты давления, так и осмотические градиенты содержимое ситовидных трубок перетекает по ним сплошным потоком открытые-ситовидные поры благоприятствуют такому перетеканию раствора. Остается одна проблема, заключающаяся в том, что, как известно, флоэмный транспорт требует более активного метаболизма, чем тот, который необходим для простого поддержания плазмалеммы ситовидных трубок. Эту дилемму можно решить, если принять во внимание тот факт, что метаболизм требуется для трех отдельных процессов загрузки флоэмы в листьях сахарозой, переноса сахарозы к местам потребления и удержания ее-внутри мембраны ситовидных трубок. Разное соотношение этих трех процессов определяет направление движения содержимого ситовидных трубок, расположенных вертикальными примыкающими друг к другу рядами. [c.253]

    Удержание сахарозы в ситовидных трубках 1в процессе транспорта [c.254]

    Было показано, что в принципе (в модельных условиях) во вторичном активном переносе может участвовать как пассивная, так и активная компонента мембранного потенциала. Так, в опытах нашей лаборатории [101] вторичный активный транспорт сахарозы в везикулах плазматических мембран клеток флоэмы борщевика, оцениваемый по изменению светопропускания суспензии везикул, наблюдался в отсутствие АТФ под влиянием диффузионного калиевого потенциала, создаваемого на мембране градиентом ионов К+ в присутствии валиномицина (рис. 19). Эти эксперименты прямо свидетельствуют об участии Е во вторичном активном транспорте. Результаты в пользу такого заключения получены недавно и в других лабораториях [484]. [c.77]

    Принципиально важный вопрос состоит в том. является ли сопряжение потока К+ с первичной и вторичной транспортными системами прямым или косвенным. Если судить по нашим данным, это сопряжение может носить косвенный характер. В описанных выше опытах компенсационные потоки К+ значительно блокировались блокатором калиевых каналов ТЭА (см. рис. 20). Это позволяет говорить о наличии на плазмалемме компенсационного диффузионного калиевого русла, общего как для протонной помпы, так и для вторичных транспортных систем. Таким образом, интегральный калиевый поток через эту мембрану есть отражение взаимодействия первичных и вторичных транспортных систем. Существование такого взаимодействия подтверждают результаты опытов нашей лаборатории, в которых при наличии активного вторичного транспорта сахарозы наблюдалась стимуляция активности Н+-АТФазы плазматических мембран флоэмы борщевика по сравнению с контролем (без вторичного транспорта сахарозы) или с вариантом, где вместе с сахарозой находился флоридзин [273]. [c.80]

    Эта специфическая роль как Е , так и АрН проявляется в ряде признаков. Так, во-первых, одно и то же в энергетическом отношении значение каждого из обоих градиентов при различных условиях может иметь различное влияние на вторичный транспорт. Например, по нашим данным, полученным на везикулах плазматических мембран флоэмы борщевика [101], при значении АрН 1.5 вторичный транспорт сахарозы оказывается большим, когда внутри везикул pH 6.0. а снаружи 7,5, чем когда внутри везикул pH 7,5, а снаружи 9,0. [c.81]

    Фотосинтетическая деятельность клеток мезофилла обогащает ткани листа сахарами и другими продуктами фотосинтеза. В результате возрастает функциональная активность проводящих пучков. Теоретически существуют два способа транспорта ассимилятов к проводящим пучкам по симпласту (через плазмодесмы и цитоплазму последовательного ряда клеток) и по апопласту (по клеточным стенкам). Однако у многих видов растений между клетками мезофилла и флоэмы плазмодесмы развиты крайне слабо или совсем отсутствуют. В апопласте листовой пластинки может находиться около 1/5 сахаров, содержащихся в листе, и значительная доля свободных аминокислот. Клетки листовой паренхимы сравнительно легко выделяют ассимиляты в наружную среду и относительно слабо их поглощают. Клетки флоэмных окончаний, напротив, способны усиленно поглощать из внешних растворов сахара и аминокислоты против концентрационного градиента с помощью энергозависимых переносчиков. Есть основание считать, что, выходя из паренхимных клеток листа в клеточные стенки, сахароза расщепляется находящейся там инвертаз ой на гексозы (фруктозу и глюкозу), которые в проводящих ч ах в овь образуют сахарозу. [c.104]

    В реакциях с участием крупных молекул (особенно из числа протекающих в несольватирующих средах) описанные эффекты теряют свое значение, уступая место влиянию на транспорт реагентов и продуктов превращения компактности пространственной сетки ионита, увеличивающейся с ростом степени сщивии. Именно поэтому константа скорости конденсации бензальдегида с ацетофеноном с возрастанием степени поперечной связанности анионита зеро-лит FF-IR от 3—5 до 7---9% снижается соответственно с 0,085 до 0,065 л моль-мин). Для реакции инверсии сахарозы на катионите амберлит-IR 120 характерна линейная, зависимость между логарифмом константы Скорости и степенью сшивки катализатора . [c.41]


    Аксоплазма представляет собой гелеподобную массу, что делает невозможной обычную диффузию макромолекул с вышеуказанными скоростями. Еще один довод против пассивного транспорта заключается в том, что разобщители окислительного фосфорилирования блокируют транспорт. 2,4-Динитрофенол, цианиды и азиды ингибируют его так же, как фторид ингибирует гликолиз. Для транспорта необходимы кислород и АТР. Быстрый аксональный транспорт не связан с телом клетки и наблюдается в изолированных аксонах в растворе Рингера, а также в бессолевых растворах сахарозы. Электровозбудимость и блокирование потенциалов действия тетродотоксином не влияют на [c.307]

    Известно, что ряд органических кислот вступает в реакции синтеза в виде своих ацил-КоА-производных. С реакцией ацилирования связывают транспорт некоторых органических кислот, например ацетата, бутирата, валерата. В таком случае возникают конкурентные взаимоотношения между органическими кислотами за свободный коэнзим А. Для некоторых бактериальных культур существуют убедительные доказательства того, что субстратная специфичность ряда жирных кислот в реакциях транспорта и ацилирования одинакова. Косвенным доказательством участия коэнзима А в транспорте является локализация ацил-КоА-синтетазы на клеточной мембране. В роли ингибиторов транспорта органических кислот часто выступают углеводы, в частности глюкоза и сахароза. [c.67]

    Флоэмой называют сложную ткань, ответственную за транспорт продуктов фотосинтеза (обычно сахарозы) от фотосинтезирующих клеток к остальным частям растения. Главным проводящим компонентом флоэмы является ситовидная трубка-длинная колонка из жнвых цилиндрических клеток, которые сообщаются друг с другом через отверстия в торцевых участках их клеточных стенок (рис. 19-11). Сахароза поступает в клетки, образующие верхнюю часть ситовидной трубки, и в растворенном виде перемещается по трубке вниз, переходя из одной ее клетки в другую. Элементы ситовидных трубок развиваются из тонкостенных прокамбиальных или камбиальных клеток их дифференцировка обычно сопровождается заметным утолщением первичной клеточной стенки, главным образом за счет отложения больших количеств целлюлозы и гемицеллюлозы. Одновременно в торцевых участках клеточной стенки в результате локального удаления ее материала образуются многочисленные поры, выстланные плазматической мембраной (рис. 19-13) [c.170]

    У животных клетки в зонах интенсивного поглощения или транспорта обычно намного увеличивают площадь своей плазматической мембраны, образуя множество тонких отростхов, называемых микроворсинками (разд. 10,5.1). Жесткая оболочка не позволяет растительным клеткам использовать такой способ, поэтому онн вынуждены искать иные пути. Специализированные передаточные клетки увеличивают свою поверхность за счет внутренних выростов клеточной стенкн, выстланных плазматической мембраной (рис. 19-22). Эти клетки встречаются во многих местах, где происходит особенно интенсивный перенос веществ через плазматическую мембрану, напрнмер в жилках листа, где сахароза поступает в сосудистую сеть флоэмы (рис. 19-23), нли в местах активного переноса растворенных веществ из ксилемы в другие тканн. [c.177]

    Флоэма представляет собой сложный комплекс клеток проводящей ткани, обеспечивающий транспорт растворенных органических веществ, главным образом сахарозы, из фотосинтезирующих клеток листа к остальным частям растения (см. рис. 20-25). Основной проводящий компонент флоэмы - это ситовидная трубка длинная колонка из живых цилиндрических клеток, которые сообщаются друг с другом через отверстия в торцевых участках их клеточных стенок (ситовидные пластинки). Сахароза поступает в клетки, образующие верхнюю часть ситовидной трубки и в виде концентрированного раствора (обычно 10-25%) перемещается по трубке вниз, переходя из одной ее клетки в другую. Клетки с толстой стенкой образуют трубку, пригодную для транспорта жидкости под высоким давлением (до 30 атм). Хотя зрелые ситовидные элементы представляют собой живые клетки с функциони- [c.404]

    Транспорт по флоэме - это гораздо более сложный проиесс. чем передвижение вешеств по ксилеме, поскольку он не ограничивается одним направлением растворенные органические вещества, главным образом сахароза, переносятся от мест их синтеза к местам потребления и хранения, независимо от того, где эти места расположены. Сахароза активно переносится внутрь ситовидных трубок и из них специализированными переОаточными клетками, расположенными в источниках и потребителях соответственно) (рис. 20-27). Повышение концентрации сахара в источниках приводит к тому, что во флоэму в этих местах поступает больше жидкости, при этом создается давление, необходимое для сильного тока жидкости через ситовидные трубки к потребителям метаболитов. Здесь сахар в основном задерживается, а вода удаляется осмотическим путем (главным образом в ксилему). Жидкость движется по флоэме со скоростью около 1 м/ч, это значительно превышает скорость диффузии. [c.405]

    Высшие растения имеют две протяженные транспортирующие системы. Одна из них—ксилемная — состоит из непрерывных трубок, образованных мертвыми клетками, по которым вода и растворенные в ней минеральные питательные вещества транспортируются из корней в листья. Вторая система — флоэмпая более сложна и менее изучена в ней с очень небольшой скоростью (не более нескольких сантиметров в час) из взрослых листьев в молодые растущие ткани транспортируются продукты фотосинтеза. По флоэме перемещается концентрированный до 16% раствор универсального энергетического продукта метаболизма растений — сахарозы, а также аминокислоты и белки в значительно меньших концентрациях. Транспорт внутри растений на большие расстояния осуществляется только по этим двум системам и только водорастворимых веществ. [c.54]

    В 1945 г. в растение вводили в виде СОг, и затем вьывляли этот нерадиоактивный изотоп углерода с помощью масс-спектрометрии. Кольцо флоэмы ошпаривали тонкой струей перегретого пара, чтобы убить клетки, и после этого транслокация меченной С-сахарозы через этот участок прекращалась. Транспорт минеральных веществ по ксилеме при такой обработке не страдал. [c.133]

    Транспорт в клубеньки больших количеств фотосинтатов (сахароза), синтез клубенек-специфичных изоферментов С-метаболизма Синтез клубенек-специфичных изоферментов М-метабо-лизма [c.178]

    М сахарозу). Малони и др. [3] рекомендуют отмывать клетки Es heri hia oli ростовой средой 63, не содержащей, однако, источника углерода. При работе с ранее не использовавшимися бактериями целесообразно методом проб подобрать наилучший раствор. Критерием эффективности служит удаление компонентов среды при сохранении внутриклеточных пулов калия, аминокислот или неорганического фосфата. Идеального промывного раствора не существует, и обычно приходится идти на некоторый компромисс. Если для определения проницаемости используют густые клеточные суспензии, состав промывной жидкости (и суспензионной среды) не так важен, как в случае применения разбавленных суспензий для анализа транспорта. (См. также разд. 10.4.2 и 25.1.) [c.443]

    Перемещение сахаров по флоэме от донора к акцептору было продемонстрировано с помощью метода включения радиоактивной метки. Радиоактивную двуокись углерода или сахарозу наносили на лист какого-либо растения и через некоторый промежуток времени растение убирали, высушивали и помещали на рентгеновскую пленку. Там, где находился радиоактивный С, на пленке возникало изображение черного цвета. Таким путем легко выявляются части растения, которые получают сахарозу от подкормленного листа (рис. 8.1). Как правило, все потребляющие органы обеспечиваются ближайшим к ним доступным источником. Поэтому самые верхние фотосинтезирующие листья снабжают растущие почки и самые молодые листья. Нижние листья обеспечивают корни, а листья, находящиеся близко к плодам, — эти плоды. У многолетнего растения, у которого рост наблюдается главным образом в начале вегетационного периода, все листья снабжают сахарозой расположенные. в разных местах запасающие ткани в конце сезона, обеспечивая создание больших запасов питательных веществ для следующего периода вегетации. Совершенно ясно, что движение веществ по флоэме не имеет определенного направления в отличие от их движения по коилеме. В нижней части стебля, это движение обычно направлено вниз к корням. В других частях стебля направление движения зависит от взаиморасположения донора и акцептора. Кроме того, направление транспорта может изменяться в зависимости как от возраста растения, так и от времени года. [c.243]

    Благодаря сочетанию ксилемного и флоэмного транспорта по растению циркулирует множество разнообразных веществ, в том числе минеральные элементы, азотистые соединения и растительные гормоны (рис. 8.2). Минеральные ионы, например, сначала поглощаются из почвы, а затем транспортируются в надземную часть растения главным образом по ксилеме. По мере старения листьев из них выводятся некоторые подвижные элементы (такие, как К" , Н2РО4-, Mg2+), которые с потоком транспортируемой сахарозы переносятся по флоэме к акцептору. При недо- [c.245]

    Следовательно, природу содержимого ситовидных трубок и процесса флоэмного транспорта можно изучать, используя тлей в качестве. своеобразных кранов. Тело насекомого удаляют, а стилет остается воткнутым в сито видную трубку в виде микро-жанюли, через которую флоэмный сок течет под действием давления в ситовидиой трубке. С помощью этого метода можно показать, что во флоэме имеются градиенты концентрации и давления, причем более высокая концентрация сахарозы и более высокое гидростатическое давление наблюдаются вблизи донора, а более низкие концентрация и давление —около акцептора. [c.249]

    В листьях сахароза, первичный подвижный продукт фотосинтеза, должна поступать в ситовидные трубки против градиента концентрации. Примечательно то, что листовые жилки ветвятся-многократно до тех пор, пока диаметр их окончаний не оказывается равным толщине нескольких сосудов и ситовидных трубок. В этом месте они тесно примыкают к мезофильным клеткам, принимающим активное участие в фотосинтезе. У сахарной свеклы Beta vulgaris) сахароза накачивается в эти концевые трубки непосредственно из стенок окружающих клеток мезофилла и мелких межклетников, куда она сначала транспортируется из клеток мезофилла (рис. 8.6). Транспорт сахарозы во-флоэму избирателен и сопряжен с активным метаболизмом. Вероятно, при этом происходит совместное проникновение (ко-транспорт) сахарозы и водорода (Н+) через специфическук> пермеазу, присутствующую в плазмалемме ситовидных трубок, благодаря градиенту pH и электрохимическому градиенту. Позднее при разгрузке энергия необходима для откачивания ионов водорода из ситовидных трубок с помощью АТР-зависимого переносчика ионов Н+. Этот фермент использует для перемещения ионов Н+ через мембрану энергию, высвобождаемую при гидролизе АТР. Ионы водорода затем могут диффундировать назад, в клетку вместе с сахарозой, используя специфическую протонно-сахарозную пермеазу и двигаясь по электрохимическому градиенту ионов Н+. [c.253]

    Во время транспорта по флоэме наблюдается высокоизбира-тельное удержание сахарозы в ситовидных трубках. Большии- Ство других молекул могут свободно диффундировать как в ситовидные трубки, так и из них при этом они находятся в со- стоянии равновесия с окружающими молекулами того же типа. Удержание сахарозы в ситовидных трубках происходит против значительного градиента концентрации и требует постоянной затраты метаболической энергии. Предполагают, что ситовидные трубки содержат большое количество АТР-азы, которая, воз- можно, участвует в этом процессе. Исходя из того, что клетки- [c.254]

    Несмотря на то что для поддержания данной системы требуется большое количество энергии, сам то себе транспорт в ситовидных трубках не зависит от метаболизма. Скорость транспорта изменяется в соответствии с уровнем потребления. Таким,-образом, метаболизм обеспечивает лишь удаление сахарозы из-флоэмы. Этот процесс вместе с метаболической загрузкой и поставляет энергию для непрерывного функционирования системы.. Само перетекание растворов питательных веществ от их источников к местам потребления или запаса1ния происходит по чистофизическим градиентам. [c.255]

    Общепризнано, что транспорт по флоэме осуществляется путем перетекания растворов. Высокое гидростатическое давление, обуславленное движением воды в богатые сахаром зоны с высоким отрицательным водным потенциалом, вызывает перетекание растворов В зоны с более низким давлением. Удаление сахара из них гарантирует постоянное аличие градиента и, следовательно, перетекание раствора. Критическими этапами в поддержании системы являются загрузка. растворенных веществ в ситовидные клетки и их разгрузка. Полагают, что загрузка включает совместный транспорт (котранспорт) сахарозы и ионов Н+ с участием специфической пермеазы, обусловленный градиентом pH и электрохимическим градиентом. Поглощенные ионы Н+ выделяются впоследствии с помощью протонного транспортера, использующего энергию АТР. Удержание сахарозы в ситовидных трубках против высоких осмотических градиентов связано, вероятно, с такими же активными процессами. [c.256]

    По современным представлениям, в плазмалемме клеток-спутников (у паренхимных клеток флоэмных окончаний) функционирует Н+-помпа, направленная наружу. Закисление апопласта в результате работы Н+-помпы способствует отдаче ионов и сахарозы клетками хлоренхимы (см. рис. 8.1). Одновременно возникший градиент pH (АрН) на плазмалемме клеток флоэмных окончаний приводит к поступлению в эти клетки сахарозы в симпорте с ионами Н (Н+-сахар — ко-транспортный механизм). Трансмембранный перенос ионов Н+ в этом случае осуществляется по концентрационному градиенту, а транспорт сахарозы — против концентрационного градиента. Этот процесс обеспечивается белками-переносчиками в плазмалемме, сродство которых к сахарам возрастает при их протонировании. Поступившие в клетки ионы Н+вновь выкачиваются Н -помпой, работа которой сопряжена с поглощением ионов К+ (см. рис. 6.8). Сахароза и ионы по многочисленным плазмодесмам переносятся в полости ситовидных трубок. Сходным образом из мезофилла в сосуды флоэмы попадают аминокислоты и другие метаболиты. Описанный механизм объясняет не только накопление сахарозы в ситовидных элементах, но и то обстоятельство, что в ситовидных трубках поддерживаются высокое содержание калия и низкая концентрация протонов. Возрастание концентрации осмотически активных веществ приводит к притоку в полость ситовидных трубок воды из окружающих тканей, прежде всего из сосудов ксилемы. [c.297]

    С другой стороны, К+ может выходить из клеток при элек-трогенном вторичном активном транспорте, обеспечивая компенсационный вынос заряда и устраняя возникшую деполяризацию. Эта роль К" " отчетливо прослеживается в экспериментах по вторичному транспорту сахарозы из везикул флоэмы борщевика [101]. Выход сахарозы из везикул (соответствует входу в клетку) происходит [c.79]

    Наиболее обоснована предложенная Э. Мюнхом (1926) гипотеза потока под давлением. Согласно этой гипотезе между фотосинтезирующими клетками листа, где в симпласте накапливается сахароза, и тканями, использующими ассимиляты (например, корнем), создается осмотический градиент, который в ситовидных трубках превращается в градиент гидростатического давления. В результате во флоэме возникает ток жидкости под давлением от листа к корню. В настоящее время эта гипотеза получила поддержку благодаря изучению механизмов загрузки и разгрузки флоэмы — решающих факторов дальнего транспорта ассимилятов. Сохраняющаяся в ситовидных трубках плазмалемма с ее свойством избирательной проницаемости является важнейшим условием, поддерживающим поток под давлением. В какой-то мере описанный механизм флоэмного транспорта сходен с механизмом, обеспечивающим подъем пасоки по ксилеме под действием корневого давления. Сходство особенно очевидно в случае весеннего плача древесных, в пасоке которых в этот период содержится много сахаров. [c.298]

    Ко вторично-активному транспорту относятся и процессы переноса, сопряженные с ферментативной модификацией переносимых соединений. Например, фосфотрансферазная система бактерий, отсутствующая у эукариот, фосфорилирует сахара в процессе их проникновения через мембрану, вовлекая их тем самым в клеточный метаболизм. У грамотрицательных бактерий так переносятся 0-глюкоза, 0-фруктоза и Ь-глюкозамин. У грамположительных бактерий набор переносимых веществ шире сюда относятся также пентозы, сахароза, трегалоза, лактоза, глицерин. При этом лактоза и фруктоза фосфорилируются по С1, остальные вещества — по концевому углероду. [c.101]

    В настоящее время неясно, для чего нужен такой ступенчатый путь гликозилирования и какую роль играет в сортировке и транспорте белков. Как уже упоминалось, с помощью дифференциального центрифугирования в градиенте сахарозы удалось разделить аппарат Гольджи на 3 фракции (по-видимому, возможно получение и большего числа фракций, обладающих различной плотностью) и исследовать в каждой из них активность ферментов гликозилирования. Было показано, что фракция наиболее плотных мембран содержит ферменты, катализирующие присоединение к олигосахаридной цепи фосфатных групп, фракция с промежу- [c.179]

    Загрузка флоэмных окончаний. В свободном пространстве клеточных стенок (в апопласте) может находиться до 20% сахаров, содержащихся в листе, куда они попадают главным образом в виде сахарозы из фотосинтезирующих клеток мезофилла. Особенности транспорта ассимилятов от мезофилла к флоэме изучены недостаточно, но, по-видимому, у разных видов растений он происходит неодинаково. Если в стенках клеток обкладки есть пояски Каспари, то сахара в этих участках должны проходить через симпласт. Многочисленные плазмодесмы между клетками обкладки или клетками листовой паренхимы и клетками-спутниками могут способствовать сим-пластному транспорту. Развитие системы лабиринтов в стенках клеток, лежащих между мезофиллом и ситовидными трубками (у ряда представителей бобовых), должно способствовать транспорту ассимилятов через мембрану и апопласт-ному перемещению веществ. У некоторых растений (сахарная свекла) нет структурных приспособлений для облегчения передвижения ассимилятов. В этом случае транспорт может быть обеспечен сильно развитой системой переносчиков на мембранах клеток. [c.296]


Смотреть страницы где упоминается термин Сахароза, транспорт: [c.107]    [c.525]    [c.136]    [c.137]    [c.180]    [c.148]    [c.249]    [c.80]    [c.84]    [c.10]    [c.397]    [c.113]   
Вода в полимерах (1984) -- [ c.338 , c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Сахароза



© 2025 chem21.info Реклама на сайте