Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие мелкие сферические вирусы

Рис. 20-23. На этой электронной микрофотографии видно, как мелкие сферические вирусные частицы переходят по плазме из одной клетки растения в другую. Диаметр этих растительных вирусов составляет 25 нм, что значительно превышает размер пептидов, не способных проходить через эти отверстия. (С любезного разрешения К. Р1а8кй1.) Рис. 20-23. На <a href="/info/716405">этой электронной</a> микрофотографии видно, как мелкие сферические <a href="/info/1401121">вирусные частицы</a> переходят по плазме из одной <a href="/info/98287">клетки растения</a> в другую. Диаметр этих <a href="/info/614128">растительных вирусов</a> составляет 25 нм, что значительно превышает <a href="/info/166846">размер пептидов</a>, не способных <a href="/info/336204">проходить через</a> эти отверстия. (С любезного разрешения К. Р1а8кй1.)

    Тепловой инактивации мелких сферических вирусов присущи песколько иные особенности. Так, для вируса кустистой карликовости томатов и вируса некроза табака значение для тепловой инактивации невелико, так что имеется довольно широкий интервал температур, в пределах которых наступает частичная потеря инфекционности. Для таких вирусов потеря инфекционности ие связана непосредственно с денатурацией вирусного белка. Можно получить препараты, полностью утративпше инфекционность, однако при этом они неотличимы от инфекционных препаратов по своей антигенной специфичности, способности кристаллизоваться и другим свойствам [94]. [c.316]

    На основании сравнительного изучения физико-хид1ических свойств вирусного нуклеопротеида и пустой вирусной белковой оболочки, обнаруженной в препаратах вируса желтой мозаики турнепса (ВЖМТ), Маркхэм [1147] пришел к выводу, что РНК вируса долн на находиться внутри белковой ободочки. Эта точка зрения сейчас ун<е широко подтверждена в отношении этого и других вирусов данными рентгеноструктурного анализа. Крик и Уотсон [417] предположили, что белковые оболочки мелких вирусов построены из большого числа идентичных субъединиц, образуюпщх либо палочкообразные частицы со спиральной симметрией, либо сферические структуры с кубической симметрией. Последующие рентгенографические и химические-исследования подтвердили эту точку зрения. Каспар и Клуг [332] сформулировали общую теорию, ограничивающую возможное число и расположение белковых субъединиц, образующих ободочки мелких изометрических вирусов. Наши современные знания о крупных вирусах с более сложной симметрией и структурой основаны на данных электронной микроскопии с использованием методов негативного контрастирования и ультратонких срезов. [c.12]

    Таким образом, точность метода реплик при правильной работе можно считать вполне удовлетворительной, во всяком случае пока речь идет об определении структурных элементов с размерами 100 А и более. Для этих условий, как отмечается в литературе, практически безразлично, применяют ли предварительно оттененную реплику, или же оттеняют уже снятую с объекта реплику. Несомненно, ренлики с успехом могут применяться и применяются для изучения более мелких деталей, но здесь положение становится менее определенным. С одной стороны, егце недавно считали, что углеродные реплики могут воспроизвести детали размером в 20 и даже 10 А [79]. На высокую точность углеродных реплик указывают также Лабав и Уайкофф [136]. Авторы при помощи предварительно оттененных углеродных реплик изучали расположение макромолекул в кристаллах различных вирусов и для наиболее низкомолекулярных соединений обнаружили частицы со средним размером 30—40 А. Они пришли к заключению, что лимитирующим фактором здесь является не точность самого метода реплик, а чистота препаратов (белковые и другие загрязнения биологических препаратов нередко настолько прочно удерживаются на поверхности, что они как бы входят в состав самого объекта), а также возможные деформации реплик под действием электронной бомбардировки нри больших увеличениях. С другой стороны, как отмечалось ранее, исследования последнего времени позволили установить существенные искажения в передаче изображения мелких деталей углеродными репликами из-за деформации последних. Однако имеющегося пока материала недостаточно для того, чтобы делать более определенные заключения. Несомненно, этот вопрос нуждается в весьма тщательном дальнейшем изучении. Можно лишь сказать, что наиболее благоприятные условия для передачи изображения будут в случае частиц простейших геометрических форм — сферической и кубической [79]. [c.112]


    Простейшие клеточные организмы-это прокариоты (буквально предъядерные ). К прокариотам относятся бактерии и сине-зеленые водоросли. Диаметр самых мелких бактерий составляет около 0,1 мкм (100 нм), т.е. они меньше наиболее крупных вирусов, однако крупные бактерии, имеющие форму палочки, достигают длины 60 мкм при поперечном диаметре 6 мкм. Бактерии могут иметь сферическую форму, форму палочек или спиралей (рис. 1.4). Клеточная мембрана бактерий окружена прочной клеточной стенкой. Их наследственное вещество заключено в единственной хромосоме, однако ядерной мембраны, отделяющей хромосому от остальной клетки, у бактерий нет (почему они и названы прокариотами). У бактерий нет также митохондрий и некоторых других органелл, характерных для цитоплазмы высших (эукариотических) клеток. [c.17]

    Морфология и химический состав. Энтеровирусы — самые мелкие и наиболее просто организованные вирусы сферической формы, диаметром 20—30 нм (рис. 10.2), состоят из однонитчатой линейной плюс-нитевой РНК и капсида. Капсид построен из 60 белковых субъединиц, уложенных по кубическому типу симметрии. Вирусы не имеют наружной суперкапсидной оболочки. В их составе нет углеводов и липидов, поэтому они нечувствительны к эфиру и другим жирорастворителям. [c.222]


Смотреть страницы где упоминается термин Другие мелкие сферические вирусы: [c.219]    [c.191]    [c.317]    [c.367]    [c.142]   
Смотреть главы в:

Вирусы растений -> Другие мелкие сферические вирусы




ПОИСК





Смотрите так же термины и статьи:

Вирус сферические

Мелкие вирусы



© 2025 chem21.info Реклама на сайте