Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточное строение организмов

    КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ [c.15]

    Открытие клеточного строения организмов указывало на единство происхождения жизни на Земле. [c.16]

    Межклеточные взаимодействия. Со времени открытия клеточного строения организмов исследователей интересуют как минимум два вопроса, решение которых связано с клеточными поверхностями. Во-первых, как клетки взаимодействуют друг с другом, чем обусловлена специфика взаимодействия, обеспечивающая в отдельных случаях достаточную силу противодействия напряжению, например, в мышечной ткани. И, во-вторых, как клетки обмениваются информацией, что обеспечивает их согласованный рост, дифференцировку, выполнение своих функций по определенному сигналу и др. С клеточными поверхностями связаны процессы секреции, оплодотворения, освобождения и место действия медиаторов и многих гормонов, эндо- и экзоцитоз, клеточное деление, синтез белка и других биологически важных молекул, иммунный ответ, движение клеток и т. п. [c.66]


    Дело в том, что каждое живое существо, будь то растение, животное или человек, состоит из клеток, то есть таких же или подобных им маленьких ячеек, которые разглядел Гук под своим микроскопом в срезе пробки. Ему первому привелось узнать, что строение организмов куда сложнее, чем это представляется невооруженному глазу человека. Оказалось, что как бы пи отличались друг от друга различные животные или растения, все они состоят из клеток, или, как говорят ученые, и.меют клеточное строение. Но этого мало. Есть еще одна черта, которая роднит самые ])азличные живые организмы, и она тоже связана с клеткой. [c.129]

    Поиски единства в разнообразии процессов и законов живой природы подводят к представлениям о биохимической универсальности, т. е. о сходстве многих путей метаболизма и молекулярных структур у разных объектов и к представлениям об универсальности клеточного строения организмов. Поэтому область сравнительной генетики, изучающей особенности организации и функционирования генетического материала разных таксонов, делает возможными не только теоретические обобщения, но и позволяет переносить способы обмена генетической информацией, найденные у [c.259]

    Основы современной биологии базируются на трех великих обобщениях — законе превращения энергии, клеточном строении организмов и эволюционной теории Ч. Дарвина, которые сыграли большую роль в развитии биологии как науки. [c.474]

    Оценивая Целлюлярную патологию Вирхова в целом, следует отметить, что она явилась важной вехой в истории биологии и медицины, и, будучи освобожденной от механистических ошибок, и дополненной позднейшими открытиями, легла в основу современных представлений о клеточном строении организма. [c.19]

    На определенной ступени эволюции органического мира возникли клеточные структуры. В этом проявляется одна из основных закономерностей, характеризующих живое единство дискретного и целостного. Именно благодаря клеточному строению организм, являясь дискретным, сохраняет целостность. Расчленение целого организма на мелкие морфологические единицы — клетки, обладающие большими поверхностями, весьма благоприятно для осуществления обмена веществ. Клеточная структура, не нарушая жизнедеятельности целого организма, способствует постепенной замене изношенных или патологически измененных частей тела новыми. Сохранение клеточной структуры во всем органическом мире обусловлено еще и тем, что, по-видимому, только с такой организацией связаны наилучшее обеспечение репродукции и реализации наследственной информации. [c.20]


    Этапы развития дрозофилы подробно описаны. После оплодотворения и слияния материнского и отцовского ядер у дрозофилы происходят последовательные синхронные де тения ядра зиготы (рис. 116, 1 — 6). Образуется многоядерный, не имеющий клеточного строения синцитий, содержащий несколько сотен ядер. Ядра синцития эквивалентны по своим потенциям в развитии (тотипотентны), т. е. каждое ядро еще сохраняет способность быть предшественником любой ткани организма. Эти ядра еще не детерминированы. [c.212]

    Фильтрующиеся вирусы относятся к живым организмам, которые не имеют клеточного строения, но обладают способностью размножаться. Вирусы проходят через бактериальные фильтры. [c.490]

    По характеру воздействия на поражаемые растения микоплазменные организмы близки к вирусам. Они вызывают у растений желтуху, карликовость. Считается, что микоплазмы являются возбудителями желтой карликовости риса, карликовости овса, ведьминых метел картофеля, столбура пасленовых и других болезней, ранее считавшихся вирусными. Однако по строению и свойствам микоплазменные организмы значительно отличаются от вирусов. Они имеют шарообразную форму, клеточное строение, хотя клетки не имеют ядер, а клеточную оболочку заменяет мембрана содержат РНК и ДНК, в то время как вирус содержит только один вид нуклеиновой кислоты. [c.45]

    Вирусы. Это — микроорганизмы, не имеющие клеточного строения. Размеры структурных единиц вирусов (вирионов) колеблются от 10 до 300 нм. В состав вирионов входят молекулы рибонуклеиновой (РНК) или дезоксирибонуклеиновой (ДНК) кислот, окруженные белковой оболочкой. Вирусы имеют разнообразную форму кубическую, сферическую, палочковидную и др. Размножение вирусов осуществляется простым делением или более сложным путем только внутри клеток живого организма. Вирусы обладают специфичностью действия, т. е. отдельные группы вирусов поражают определенные живые организмы. [c.200]

    Вирусы — ультрамикроскопические белковые тела, вызывающие инфекционные болезни человека, животных и растений. Не имеют клеточного строения. Вирусы являются облигатными паразитами, способными жить и размножаться только в живых клетках организма хозяина. [c.69]

    По размеру и характеру воздействия на поражаемые растения близки к вирусам, но по строению и свойствам резко от них отличаются. Микроплазменные организмы имеют клеточное строение, представляют собой тельца неправильной формы с двухслойной оболочкой. Они обладают са- [c.70]

    Используя микроскоп, ученым вскоре удалось прийти к одному из основных обобщений биологии, о котором мы уже упоминали, к созданию так называемой клеточной теории строения организмов. Теории, которую Энгельс отнес к числу величайших открытий человечества. [c.132]

    Для большинства бактерий и архей можно считать справедливым утверждение о том, что это маленькие, просто устроенные организмы, имеющие универсальное строение. С другой стороны, мир микробов, населяющих нашу планету, чрезвычайно разнообразен. Его представители различаются морфологически, а также физиологическими и биохимическими свойствами. По принципу клеточной организации все микроорганизмы могут быть разделены на два типа — прокариоты и эукариоты. У прокариот ядерный аппарат, называемый часто нуклеоидом, представлен, в большинстве случаев, кольцевой молекулой ДНК, соответствующей одной хромосоме. У эукариот ядро содержит набор хромосом и отделено от цитоплазмы мембраной. Различия в организации ядерного аппарата коррелируют с рядом других особенностей эу- и прокариот (табл. 1). Первоначально к микроорганизмам относили и вирусы, однако в настоящее время их чаще рассматривают как особые формы жизни, не имеющие клеточного строения и содержащие, в отличие от про- и эукариот, лишь один тип нуклеиновых кислот (ДНК или РНК). [c.18]

    Другую группу организмов , не укладывающихся ни в одну из систем классификации, образуют вирусы. Вирусы — это чрезвычайно мелкие частицы, состоящие только из генетического материала (ДНК или РНК), окруженного защитной белковой оболочкой. В отличие от всех других организмов вирусы не имеют клеточного строения и способны размножаться, лишь проникнув в живую клетку. Природа вирусов обсуждается в разд. 2.4, а на рис. 2.4, А они вьщелены в дополнительную группу. [c.19]

    Событие, очень важное для возникновения и развития представлений о клеточном строении живых организмов. [c.169]

    Вирусы настолько просты, что обходятся без собственного аппарата считывания наследственной информации и использования ее для синтеза белков. Они существуют лишь потому, что паразитируют на организмах, обладающих клеточным строением (бактериях и эукариотах) и аппаратом матричного копирования генетической информации и синтеза белков, который вирусы и используют для собственного воспроизведения. В результате их многогранной деятельности люди болеют гриппом, корью, свинкой, полиомиелитом (детским спинным параличом), бешенством, СПИДом, оспой и т. д. Животные и растения, в том числе домашние, тоже страдают (и нередко погибают) от вирусных заболеваний. [c.90]

    Создание клеточной теории строения организмов было, наряду с законом сохранения энергии и теорией эволюции, отнесено Ф. Энгельсом к числу тех открытий, которые положили конец господству метафизики и идеализма в биологии и сделали естествознание XIX столетия упорядочивающей наукой, наукой о процессах,. ..и о связи, соединяющей эти процессы природы в одно великое целое  [c.18]


    Установление факта клеточного строения нервной системы еще не означало раскрытия механизмов ее функции. Этот факт мог служить лишь отправной точкой. Как следует из второй половины данного нами определения нейробиологии, задача заключается в том, чтобы понять, как нервные клетки организуются в функциональные системы. Обратимся снова к рис. 1.2 и сравним организацию клеток в других тканях организма. Для железистых органов, например печени, основными функциями должны быть метаболическая и секреторная активность отдельных клеток пространственное расположение клеток таких органов важно только с точки зрения транспорта веществ между клетками и кровью. В других же тканях, например коже, мышцах и кости, на первый план выступают механические факторы, а в таких органах, как легкие или почка, комбинируются метаболические и механические функции. [c.29]

    Закон сохранения энергии, Периодическая система элементов Д. И. Менделеева, клеточная теория строения организмов, эволюционная теория Дарвина, теория строения органических соединений, сформулированная нашим замечательным соотечественником А. И. Бутлеровым, — таков перечень, неполный, фундаментальных открытий, без которых были бы невозможны успехи фармакологии. [c.18]

    Все растительные и животные организмы имеют клеточное строение. Растения по ряду признаков отличаются от животных, хотя провеет четкую грань между всеми растениями и всеми животными не удается. [c.286]

    Щ1Л середине XIX века одни из основоположни-ков теории клеточного строения организмов, немецкий ботаник Шлейден, назвал клетку ИИ микроскопическим пузырьком, наполненным растительной слизью . Несколько позже другой ученый, тоже ботаник. Моль, дал ей имя протоплазмы, и с той поры оно сохранилось за одной из главней-1И1 Х составных чаете всякой клетки — и раститель-но11 и животной. [c.153]

    Термин протоплазма был впервые предложен чешским ученым Я. Пуркинье. Большую роль в обосновании представлений о клеточном строении организмов сыграли исследования русских академиков К. Вольфа и К. Бэра, П. Ф. Горянинова и др. [c.19]

    К 30-м годам XIX века накопилось немало работ о клеточном строении организмов. Общепризнанным стало представление о клетке как элементарной микроскопической структуре растений. Немецкий ботаник Маттиас Шлейден (1804—1881) первым пришел к заключению, что в любой растительной клетке имеется ядро. [c.18]

    Р.Виттэкер (R. Whittaker) предложил схему, по которой все живые организмы, имеющие клеточное строение, представлены разделенными на пять царств (рис. 2). Такая система классифика- [c.19]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    История современного естествознания знает много аналогичных примеров. Гук в XVII веке наблюдал клеточное строение растительных тканей. Но открытие клетки (в смысле создания клеточной теории) было сделано только в XIX веке, и это открытие, а не простое наблюдение вызвало коренные изменения во взглядах на живой организм и его историю. [c.283]

    Естественная классификация — это попытка использовать естественные взаимосвязи между организмами. В этом случае учитывается больше данных, чем в искусственной классификации, при этом принимаются во внимание не только внешние, но и внутренние признаки. Учитываются сходство в эмбриогенезе, морфологии, анатомии, физиологии, биохимии, клеточном строении и поведении. В наши дни чаще пользуются естественной и филогенетической классификациями. Филогенетическая классификация основана на эволюционных взаимосвязях. В этой системе, согласно существующим представлени- [c.16]

    История возникновения н развития цитологии неразрывно связана с изобретением микроскопа и совершенствованием техники микроскопических исследований. Английский естествоиспытатель Р. Гук, рассматривая под микроскопом пробку, обнарул(ил, что она состоит из отдельных замкнутых ячеек. Он назвал их клетками. Это открытие, имевшее для биологии очень важное значение, Р. Гук в 1665 г. опубликовал в своей книге Микрография . Но потребовалось немало времени и работы многих ученых, преледе чем было доказано клеточное строение живых организмов. В 1827 г. русский ученый П. Ф. Горянинов в книге Начальные основания ботаники впервые изложил клеточное строение растений. В 1834 г. он четко сформулировал представление о клеточном строении лживой материи. В 1838—1839 гг. немецкие ученые ботаник М. Шлей-ден и зоолог Т. Шванн, изучая строение тканей растений и животных, независимо друг от друга пришли к выводу, что все живые организмы состоят из клеток. В 1855 г. Р. Вирхов сформулировал [c.15]

    Рйс. 2.4. А. Каассификация по Маргелису и Шварцу все организмы разделяются на пять царств. Вирусы не соответствуют ни одной из групп в данной классификации живых организмов, поскольку они устроены слишком просто, не имеют клеточного строения и не способны существовать независимо от других организмов. Б. Эволюционные взаимоотношения между пятью царствами. Как видно из схемы, начиная с протоктистов, эволюция происходила в направлении многоклеточности. [c.18]

    Тип I. Зеленые водоросли (СЫогорЬусеае) — самый распространенный тип среди-водорослей, объединяющий крайне разнообразные по строению организмы. Среди зеленых водорослей есть одноклеточные, многоклеточные и колониальные формы. У большинства видов этих водорослей клетки имеют целлюлозную оболочку, вакуоль с клеточным соком, как правило, одно дифференцированное ядро и хлоропласты, форма которых очень разнообразна пластинки, сеточки, звездочки, диски. Зеленые водоросли содержат те же пигменты, что и высшие растения, т. е. хлорофилл и каротин. Размножение пбловое и бесполое с образованием подвижных зооспор. 1 [c.40]

    ПАВ неодинаково действуют на грамположительные и грамотрица-тельные клетки, поэтому в зависимости от состава и строения клеточной стенки организма-деструктора и свойств сурфактанта требования к применяемым ПАВ различны. [c.353]

    Клеточное строение, характерное для всех растительных и животных организмов, обусловлено деятельностью клеток, составляющих единое целое. Основные свойства живой материи — это обмен веществ, рост, раздражимость, саморепродукция, наследственность, изменчивость и т. п. осуществляются на уровне клетки. Несмотря на различия в структуре и функциях клеток отдельных организмов, имеются некоторые общие особенности, присущие всем клеткам, они и являются основным предметом цитологических исследований. [c.10]

    Из организмов, имеющих клеточное строение, наиболее примитивна микоплазма (Мусор1а5та1асеае). Это — бактериоподобные существа, ведущие паразитический или сапрофитный образ жизни. По своим размерам микоплазма приближается к вирусам. Самые мелкие клетки микоплазмы крупнее вируса гриппа, но мельче вируса коровьей оспы. Так, если вирус гриппа имеет диаметр от 0,08 до 0,1 р., а вирус коровьей оспы 0,22—0,26 [х, то диаметр клеток микоплазмы — возбудителя повального воспаления легких рогатого скота — колеблется от 0,1 до 0,2 р.. [c.289]

    С другой стороны, среди эукариотических микроорганизмов известен целый ряд так называемых модельных объектов, удобных для изучения структуры, функции и регуляции действия генома, детерминации и клеточной дифференцировки. Если к началу 70-х годов основными объектами молекулярной генетики оставались бактерии и бактериофаги, то в 80-х годах их сильно потеснили эукариоты и прежде всего эукариотические микроорганизмы, сочетающие клеточное строение, характерное для высших организмов, с одноклеточностью микробов. [c.182]

    Русский ученый, основоположник науки о вирусах, физно-лог-ботаник Д. И. Ивановский (1864—1920) обнаружил в клетках листьев табака бесцветные кристаллообразные отложения, которые были скоплением элементарных телец вирусов — возбудителей мозаичной болезни табака. Вирусы не имеют клеточного строения и обладают рядом свойств, характерных для живых организмов, — способностью к самовоспроизведению и обмену веществ. Существование вирусов указывает на большую сложность и разнообразие форм жизни. В 1892 г. Д. И. Ивановский опубликовал свой выдаюи ийся труд О болезнях табака . Это дало начало новой науке— вирусологии. [c.31]

    Вирусы (virus), мельчайшие организмы, по своему строению резко отличаются от других форм живого тем, что не имеют клеточного строения (рис. 108). Благодаря своей величине они могут проходить через любые фильтры, в том числе каолиновые, имеющие наиболее мелкие поры, поэтому первоначально они были названы фильтрующимися вирусами. Существование вирусов было доказано русским ботаником Д. И. Ивановским в 1892 г., но увидеть их удалось лишь намного позже. Большинство вирусов имеет субмикроскопические размеры, поэтому дляч изучения их строения пользуются электронным микроскопом. Наиболее мелкие вирусы, например возбудитель ящура, немногим превышают размеры молекулы яичного белка, но встречаются такие вирусы, как возбудитель оспы, которые видны в оптический микроскоп. [c.287]

    В отличие от вирусов, осуществляющих процессы жизнедеятельности только после проникновения в клетки, микоплазма способна проявлять жизнедеятельность, свойственную организмам, имеющим клеточное строение. Эти бактериоподобные существа могут расти и размножаться на синтетической среде. Их клетка построена из сравнительно небольшого числа молекул, всего около 1200, но имеет полный набор макромолекул, характерных для любых клеток белки, ДНК и РНК. Клетка микоплазмы содержит около 300 различных ферментов. [c.289]


Смотреть страницы где упоминается термин Клеточное строение организмов: [c.175]    [c.29]    [c.238]    [c.9]    [c.212]    [c.3]    [c.29]    [c.16]    [c.85]   
Смотреть главы в:

Генетика Изд.3 -> Клеточное строение организмов




ПОИСК







© 2025 chem21.info Реклама на сайте