Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаги белковая оболочка

Рис. 2-25. А. Вирус табачной мозаики, имеющий палочковидную форму. Электронная микрофотография ( ) и модель (В) бактериофага Т4-сложного вируса, по своей форме напоминающего головастика. После прикрепления концевых нитей бактериофага к специфическим участкам на клеточной стенке Е. соН ДНК из головки бактериофага впрыскивается через отросток ( хвост ) в клетку. Электронная микрофотография (7") и составленная из теннисных мячиков модель (Д) аденовируса, оболочка которого состоит из 252 белковых субъединиц, образующих многогранник с 20 гранями (икосаэдр)/ Рис. 2-25. А. <a href="/info/387602">Вирус табачной мозаики</a>, имеющий палочковидную форму. <a href="/info/73091">Электронная микрофотография</a> ( ) и модель (В) бактериофага Т4-<a href="/info/1310513">сложного вируса</a>, по своей форме напоминающего головастика. После прикрепления концевых нитей бактериофага к специфическим участкам на <a href="/info/98958">клеточной стенке</a> Е. соН ДНК из <a href="/info/489895">головки бактериофага</a> впрыскивается через отросток ( хвост ) в клетку. <a href="/info/73091">Электронная микрофотография</a> (7") и составленная из теннисных мячиков модель (Д) аденовируса, оболочка <a href="/info/947978">которого состоит</a> из 252 <a href="/info/509091">белковых субъединиц</a>, <a href="/info/1780355">образующих многогранник</a> с 20 гранями (икосаэдр)/

    Бактериофаги, т. е. вирусы, размножающиеся в бактериях, состоят из белковой оболочки и содержащейся внутри нее ДНК или РНК. С помощью меченых атомов и Р установлено, что при заражении бактериальной клетки фагом в нее не входит белок (метка по сере), но входит ДНК (метка по фосфору). Частица бактериофага вспрыскивает свою ДНК в клетку. Размножение частиц фага в клетке показывает, что ДНК ответственна за синтез своих копий и белковых оболочек, т. е. она является генетическим веществом фага. [c.487]

    Вирусы (по латыни вирус означает яд , отрава ) являются возбудителями болезней растений и животных. С биологической точки зрения вирусы - это внутриклеточные паразиты [4], которые могут размножаться только внутри клетки-хозяина. Вирусы, инфицирующие бактерии, называются бактериофагами. Вирус представляет собой шарообразную или палочкообразную полую частицу, образованную одним или несколькими сортами белка, диаметром в несколько сот ангстрем, внутри которой заключена нуклеиновая кислота (ДНК или РНК, одноцепочечная или двухцепочечная), длиной до сотен микрометров. Белковая оболочка вируса, называемая капсидом, у некоторых вирусов животных может быть заключена во внешнюю мембранную оболочку, состоящую из двойного липидного слоя. [c.91]

    Проникновение фага в клетку осуществляется в несколько этапов (рис. 66). Вначале бактериофаг адсорбируется на клетке-хозяине, прикрепляясь к ее стенке концом хвоста . Затем фаг внедряется в клетку, причем в нее проникает лишь ДНК фага, а белковая оболочка остается снаружи. С помощью электронного микроскопа удавалось увидеть тени фага — пустые белковые оболочки, оставшиеся после внедрения ДНК фага в бактерию. При размножении фага в клетке в ней происходят существенные изменения она перестает делиться и все ее содержимое [c.473]

    Сравнительно недавно была детально изучена структура белковой оболочки нитевидного бактериофага Pfl [38, 39]. Мол. вес белковых субъединиц этого бактериофага (дополнение 4-В) равен - 5000. Они имеют форму а-спиралей длиной 7 нм, образующих в составе бактериофага структуру типа левой спирали с шагом 1,5 нм, на один виток которой приходится 4,4 субъединицы (рис. 4-8). Белковые палочки расгю- [c.274]

    Бактериофаг, вирус, убивающий бактерию. Состоит из нуклеиновой кислоты (ДНК или РНК), помещенной в белковую оболочку. Заражение бактерии происходит тогда, когда бактериофаг, присоединившись к оболочке, впрыскивает внутрь бактерии свою нуклеиновую кислоту. Вскоре после этого ресурсы бактерии переключаются на синтез вирусной нуклеиновой кислоты и вирусных белков. Минут через двадцать после заражения бактериальная оболочка лопается и из нее вываливается сотня готовых вирусных частиц, являющихся точной копией исходного бактериофага. [c.152]


    Нуклеопротеидные частицы, известные под названием вирусов, атакуют самые разные живые организмы — от мельчайшей микоплазмы до человека. Они не обладают собственным метаболизмом и оживают , лишь когда содержащаяся в них нуклеиновая кислота проникает в живую клетку. Вирусы привлекают к себе большое внимание не только в связи с тем, что они являются болезнетворными агентами, но также и потому, что широко используются в молекулярно-биологических исследованиях. Зрелая вирусная частица, ил вирион, состоит из одной или нескольких молекул нуклеиновых кислот и белковой оболочки — капсида, которая имеет обычно спиральную или икосаэдрическую форму. Капсид построен из морфологических субъединиц , или капсомеров иногда хорошо различимых под электронным микроскопом. Капсомеры в свою очередь состоят из большого числа белковых субъединиц меньшего размера. Некоторые крупные вирусные частицы имеют мембраноподобную оболочку. Другие, например Т-четные бактериофаги, инфицирующие Е. oli, весьма необычны по форме (дополнение 4-Д). [c.286]

    К объектам, изучаемым микробиологией, относятся также вирусы, представляющие собой мельчайшие живые существа, видимые только под электронным микроскопом, размеры их варьируют от 16 до 300 ммк. Они не имеют клеточной структуры, состоят из наследственного материала — нуклеиновой кислоты, покрытой белковой оболочкой. Вирусы являются внутриклеточными паразитами. Они проникают в живую клетку и размножаются, используя питательный материал и ферментные системы клетки, так как не обладая собственным, имеют общий обмен веществ с клеткой, в которой живут. Последняя теряет свойственную ей ранее функцию и приобретает новые, часто вредные для организма особенности. Вирусы паразитируют в живых клетках человека, животных и растений, насекомых и др. Среди них есть виды, паразитирующие в клетках бактерий и вызывающие их разрушение и гибель это — бактериофаги [94, 95]. [c.45]

    Их можно выделить и сохранить в кристаллической форме — примерно так же, как сахар или фенол. Но когда вирусы попадают в живую клетку, они ведут себя, как живые существа — размножаются. Особым видом вирусов являются бактериофаги (пожиратели бактерий), их кратко называют фагами. Они поражают только бактерии. Фаги состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки (рис. 43). [c.165]

    Многие вирусы бактерий (бактериофаги) состоят из белковой головки, или капсида, в которую заключена ДНК или РНК. На рис. 4.9 показаны этапы сборки одного из таких вирусов. Иногда капсид собирается независимо, а затем в него вводится ДНК практически без изменения свойств капсида. Известны и другие случаи, когда введение ДНК сопровождается заметными изменениями в строении и составе капсида. И наконец, есть случаи, когда размер капсида, по-видимому, определяется размером находящейся в нем нуклеиновой кислоты. В более сложных вирусах помимо белковой оболочки имеется и белковое ядро. [c.210]

    В бактериальной клетке РНК и белки производятся в цитоплазме, так как у бактерий нет мембраны, окружающей единственную хромосому. Вирусы — паразиты, которые внедряются в клетку и используют ее молекулярный аппарат для собственного размножения. Они очень мелкие, приблизительно в 10-15 раз меньше, чем клетки, и состоят только из белковой оболочки и генома, представленного ДНК- или РНК-молекулой. Вирусы имеют разные формы и размеры, а молекулы нуклеиновых кислот в их геноме могут быть и двухцепочечными, и одноцепочечными, и линейными, и кольцевыми. Вирусам, которые размножаются в бактериальных клетках, дано специальное название — бактериофаги. Некоторые вирусы безвредны, например, эндогенные РНК-ретровирусы, которые закодированы в геноме нормальных клеток (в виде ДНК) и продуцируются (в виде РНК-транскриптов) нормальной клеткой, например, стимулированным антигеном В-лимфоцитом (см. рис. 1.2). [c.43]

    Вирусы — мельчайшие живые существа размером 16...30 мкм, видимые только под электронным микроскопом. В отличие от бактерий они пе имеют клетчатой структуры и состоят из нуклеиновой кислоты, покрытой белковой оболочкой. Они имеют шаро- и кубообразную форму или форму прямых и изогнутых палочек. Вирусы являются внутриклеточными паразитами. Среди них встречаются бактериофаги, паразитирующие в клетках бактерий и вызывающие их разрушение и гибель. [c.60]

    Роль ДНК как носителя генетической информации подтверждается целым рядом фактов. Эксперимент Эвери, МакЛеода и Мак-Карти показал, что ДНК, вьщеленная из одного штамма бактерий, способна проникнуть в клетки другого штамма и трансформировать их, придавая им некоторые наследуемые признаки донора. Опыт Херши и Чейз продемонстрировал, что именно ДНК бактериофага, а не его белковая оболочка несет генетическое сообщение для репликации вируса в клетке-хозяине. Все соматические клетки организма данного вида сод жат ДНК с одинаковым нуклеотидным составом, который не зависит ни от. питания, ни от условий окружающей среды Хотя нуклеотидный состав ДНК у разных видов различен, в двухцепоче ных ДНК всех видов число остатков аденина всегда равно числу остатков тимина, а число гуаниновых остатков всегда равно числу цитозиновых остатков. [c.890]

    Таким образом, эксперименты по трансформации бактерий убедительно показали, что ДНК является генетическим материалом. На это указывали также результаты некоторых других экспериментов. Было обнаружено, например, что ДНК локализуется в ядрах эукариотических клеток. Оказалось, что абсолютное количество ДНК в расчете на одну клетку для организма данного вида — величина постоянная. Тот факт, что ДНК представляет собой генетический материал определенных вирусов, доказали в 1952 г. Д. Херши и Чейз [8а], обнаружившие, что при заражении клетки вирусом бактерий (бактериофагом) вирусная ДНК проникает внутрь бактерии, а белковая оболочка остается снаружи. Это удалось продемонстрировать, приготовив два типа меченых бактё-риофагов Т2 (дополнение 4-Д). В одном из них ДНК была мечена изотопом а у другого в белок был включен изотоп Клетки Е. соИ заражали препаратами меченых фагов, а затем энергично перемешивали в гомогенизаторе Уоринга для удаления фаговых частиц. В результате произошло следующее около 80% отделилось от бактерии, большая же часть Р проникала внутрь бактерий и могла быть обнаружена даже в бактериофагах следующих поколений [3]. [c.183]


    В настоящее время общепризнанным является тот факт, что передача наследственной информации в живых организмах осуществляется молекулами ДНК. В главе 8 отмечалось, что на рубеже XIX—XX вв. процессы передачи наследственной информации в живом мире ассоциировались с белками, что затормозило рещение общебиологической проблемы наследственности. В 40 —50-е годы XX в. появилось много экспериментальных указаний на то, что передачу признаков по наследству в живых организмах осуществляют именно молекулы ДНК. Самым наглядным доказательством этого явилось изучение молекулярных аспектов размножения вирусов, паразитирующих на бактериях, — бактериофагов. Примером тому может служить бактериофаг Т4, относящийся к семейству Т-четных бактериофагов и размножающийся в клетках кишечной палочки Е. oli. Бактериофаг Т4 состоит из молекулы ДНК и белковой оболочки с довольно сложной морфологией (рис. 11.1). Фаг имеет головку икосаэд-рической формы, в которой достаточно плотно упакована одна молекула ДНК, и полый цилиндрический хвост, от конца которого отходят шесть тонких нитей. Хвост имеет двойные стенки, т. е. представляет собой полую трубку. [c.341]

    Бактериофаги. При конструировании клонотек нуклеотидных последовательностей для фагового дисплея чаще всего используют хромосомы нитевидных колифагов М13, fl и fd, а также фагмиды, полученные на их основе. Эти фаги заражают мужские клетки Е. oli через половые ворсинки (F-пили), которые содержат белковые рецепторы, обеспечивающие их сорбцию. Хромосома фагов представляет собой одноцепочечную, кольцевую, ковалентно замкнутую ДНК, которая заключена внутри цилиндрической белковой оболочки, обеспечивающей выживание вирусов в экстремальных условиях при значениях pH 2,5-11 и темпе- [c.334]

    Генетические исследования бактериофагов начались много раньше, чем бактерий (отчасти вследствие проницательности Мёллера), и в 1952 г. удалось показать, что наследственным веществом фага Т2 является ДНК. Это открытие было встречено с большим воодушевлением и привлекло внимание к работам, выполненным на пневмококках за несколько лет до этого. Бактериофаг Т2-один из наиболее тщательно исследованных фагов Е. oli. Этот вирус содержит ДНК, заключенную в белковую оболочку. В 1952 г. Альфред Херши и Марта Чейз выяснили роль каждого из этих двух компонентов в формировании потомства фага. [c.96]

    Вирусы, поражающие бактерии, называются бактериофагами (буквально —пожирателями бактерий) или просто фагами. Они имеют округлую или многогранную головку и отросток в виде белковой трубочки. Головка окружена белковой оболочкой и содержит ДНК или РНК. Прикрепляясь к клеточной стенке бактерии, фаг как бы просверливает ее, и ДНК фагё через отросток поступает в клетку. Фаговая ДНК так перестраивает механизм обмена бактерии, что в ней начинают синтезироваться частицы фа а. Через несколько минут все содержимое клетки превращается в зрелые фаговые частицы, оболочка бактерии растворяется и фаги выходят наружу. [c.47]

    К настоящему времени выяснено, что ДНК несет в себе тот генетический рецепт, на основе которого в ряде последовательных клеточных делений образуются идентичные клетки. В процессе воспроизведения ДНК воспроизводится информация, необходимая для синтеза специфических ферментов и других клеточных белков. Генетическая информация, содержащаяся в ДНК, заключена в последовательности четырех типов оснований (А, Т, Г, и Ц) вдоль фосфатноуглеводного остова (т. е. последовательности расположения четырех типов нуклеотидов, из которых построена ДНК). Таким образом, последовательность А—Г—Ц в каком-либо участке цепи несет иную информацию, чем последовательность Г—А—Ц. Последовательность оснований в ДНК может быть модифицирована химически путем обработки ДНК in vitro (вне клетки) или in vivo (внутри клетки) азотистой кислотой, под действием которой первичные аминогруппы аденина, цитозина и гуанина превращаются в группу ОН. Результатом этого оказывается изменение генетического кода, поскольку модифицированная таким образом ДНК вызывает мутации в организме, из которого она первоначально была получена. Резкие изменения могут произойти в тех случаях, когда ДНК бактериофага (который весь состоит из нити ДНК, заключенной в белковую оболочку) вводится в бактериальную клетку. Фаговая ДНК действует в качестве затравки и вызывает в бактериальной клетке синтез новой ДНК и белков по своему образцу , что в конце концов приводит к разрушению клетки, в которую внедрился бактериофаг, и выходу во внешнюю сферу новых фаговых частиц. [c.139]

    Перейдем теперь к генетике бактериофагов, которые изучены гораздо лучше, чем все другие вирусы. Картина заражения клетки бактериофагом следующая. Бактериофаг адсорбируется своим хвостом на внешней поверхности клетки, проделывает в оболочке микроскопическое отверстие, для чего в его хвосте присутствует специальный фермент со свойствами лизоцима, затем инъецирует внутрь клетки свое содержимое, что у больших фагов сопровождается настоящим сократительным движением (рис. 124). В результате от фага остается нустая белковая оболочка, или тень . Отдельные эпизоды во всей этой последовательности удается хорошо заснять с помощью электронного микроскопа. Освободить бактериальную клетку от адсорбированных на ней пустых оболочек фагов легко с помощью быстрой мешалки. [c.364]

    Данные биохимических и генетических исследований свидетельствуют о том, что нуклеиновые кислоты определяют процесс синтеза не только реплик этих кислот, но и белков. Можно привести следующие факты, указывающие на фундаментальную роль нуклеиновых кислот в биологических процессах. Прямыми опытами показано, что изменение ДНК некоторых бактерий влияет на их наследственные свойства. ДНК, изолированная из одного типа бактериальной клетки (пневмококк), может быть использована для наследственноустойчивого превращения клетки второго типа. Так, штамм, неустойчивый по отношению к пенициллину, может быть превращен в пенициллиноустойчивый путем введения соответствующей ДНК. Был открыт целый ряд такого рода явлений [ ]. При внедрении только нуклеиновой кислоты бактериофага в клетку в ней репродуцируется весь бактериофаг, состоящий из нуклеиновых кислот и белков. Сходные факты обнаружены при исследовании вирусов, в частности вируса табачной мозаики, также состоящего из нуклеиновой кислоты (РНК) и белковой оболочки. Оказалось, что чистая РНК вируса обладает инфицирующей способностью — при введении в клетку РНК в ней размножается вирус, т. е. белок достраивается в соответствии с природой, введенной РНК [ ]. [c.232]

    Обратимся теперь к роли репрессоров и активаторов транскрипции в регуляции жизненного цикла бактериофага лямбда (X). Зрелая вирусная частица состоит из линейной двухспиральпой молекулы ДНК (48 кЬ), упакованной в белковую оболочку. Существует два пути развития вируса он может разрушить клетку-хозяина или он может стать ее комнонентом (отсюда и название- умеренный). При литическом пути развития происходит полное выражение (экспрессия) фаговых генов, что приводит к лизису бактерии и образованию примерно 100 вирусных частиц потомства. В другом случае развитие фага X может пойти по пути лизогенизаиди клетки, когда его ДНК становится ковалентно связанной с ДНК клетки-хозяина в строго определенном месте (сайт-специфи-ческая интеграция). Этот процесс рекомбинации, в котором участвует кольцевая молекула ДНК фага мы обсудим ниже (разд. 30.16). Когда ДНК фага интегрирует с ДНК клетки-хозяина, большинство фаговых функций выключается. Фаговая ДНК в таком состоянии называется профагом, а клетка-хозяин, содержащая профаг-лг/зо-генной бактерией. Нрофаг реплицируется [c.120]

    Вирусы, которые не имеют клеточной структуры, являются с химической точки зрения также нуклеоиротеидами. Важная биологическая роль нуклеиновых кислот в вирусах выясняется из того факта, что при заражении вирусом (например, бактериофагом — Bjipy oM бактерий) заражаемая клетка получает от вируса только нуклеиновую кислоту, а белковая часть (оболочка) вируса остается снаружи, в клетку не проникает и отбрасывается. После заражения внутри клетки-хозяина за счет нуклеотидных, аминокислотных н ферментных ресурсов этой клетки вырастает множество частиц вируса (бактериофага). Эти новые частицы состоят не только из многократно повторенных нуклеиновых кислот, но имеют и белковые оболочки, тождественные с белком исходной заражающей частицы вируса, хотя белок не проникал в зараженную клетку. Отсюда ясно, что нуклеиновые кислоты принимают решающее участие в биосинтезе белка, чему позднее мы приведем и другие доказательства. Это поставило полинуклеотиды в центр интересов современного естествознания, тогда как отдельные нуклеотиды были известны еще со времен Либиха. [c.673]

    Физические и химические исследования бактериофага 2 показали, что его частица содержит одну одноцепочечную (некольцевую) молекулу РНК длиной около 3300 нуклеотидов. (Следовательно, РНК 2 несет примерно в два раза меньше генетической информации, чем РНК ВТМ.) Нуклеотидный состав РНК 12 следующий [А] = 0,23 [Г] = 0,26 [У] = = 0,26 и 1Ц] = 0,25. Белковая оболочка фага 2 представляет собой сферическую структуру из 180 одинаковых молекул белка, каждая из которых содержит 129 аминокислот. Анализ аминокислотной последовательности белка фага 12 и родственных ему фагов М52 (выделенного в Калифорнии) и 1г (выделенного в Германии) показал, что белок М52 отличается от белка 2.по 88.-й аминокислоте, белке фага 12 в этом мес е находится оста- [c.469]

    Накопленный к настоящему времени офомный фактический материал по строению и свойствам биополимеров в условиях живой клетки позволяет говорить о еще более высоких уровнях пространственной организации белковых молекул. Так, некоторые белки способны к образованию поли- или мультиферментных комплексов (например, пируватдегидроге-назный комплекс ферментов), протяженных структур (белковые оболочки бактериофагов) и надмолекулярных комплексов, функционирующих как единое целое (например, компоненты дыхательной цепи митохондрий). [c.70]

Рис. 1-8. Микрофотография бактериальной клетки (Es heri hia oli) в нормальном здоровом состоянии (А) и через час после инфицирования бактериофагом Т4 (5). Частицы фага (некоторые из них видны прикрепленными к наружной оболочке клетки) впрыскивают свою ДНК в клетку, затем эта ДНК направляет синтез специфических фаговых белков, одни из которых разрушают ДНК бактерии-хозяина, а другие катализируют репликацию ДНК бактериофага На представленной стадии вновь синтезированная фаговая ДНК, упакованная в белковые оболочки, видна в виде Рис. 1-8. Микрофотография <a href="/info/32980">бактериальной клетки</a> (Es heri hia oli) в нормальном <a href="/info/1354165">здоровом состоянии</a> (А) и через час после <a href="/info/1310342">инфицирования бактериофагом</a> Т4 (5). <a href="/info/1891563">Частицы фага</a> (некоторые из них видны прикрепленными к <a href="/info/1567664">наружной оболочке</a> клетки) впрыскивают свою ДНК в клетку, затем эта ДНК <a href="/info/1874676">направляет синтез</a> специфических фаговых белков, одни из которых разрушают ДНК бактерии-хозяина, а другие катализируют репликацию ДНК бактериофага На представленной стадии вновь синтезированная фаговая ДНК, упакованная в белковые оболочки, видна в виде
    С другой стороны, фотодинамическая активность красителей зависит от степени их проникновения через белковый чехол к нуклеиновой кислоте фага. Действительно, по данным Ямомото, изучавшего фотодинамическое действие многих красителей на бактериофагах Т-серии, наибольшей резистентностью обладали фаги (ТЗ, Т5, Т7), у которых проникновение красителей через белковый чехол было затруднено. Предынкубация фага Т2 с красителем при различных температурах сенсибилизировала его к действию света, причем величина температурного коэффициента была такой же, как и для процессов диффузии через мембрану (Сю = 4). К тому же эффекту приводила обработка фагов мочевиной, разрыхляющей белковую оболочку и облегчающей проникновение красителя к ДНК. Приведенные факты не оставляют сомнений в том, что первичное повреждение вирусов преимущественно локализовано в нуклеиновой кислоте. Это тем более справедливо для мутаций вирусов, обусловленных фотодинамическим действием. При фотодинамическом по- [c.348]

    Бактериофаги, или вирусы бактерий, весьма разнообразны. Лучше всего изучены мелкие мужские бактериофаги Е. ali. Они представляют собой фаги, содержащие РНК R17, f2, MS2, Q6. Их геном включает всего 4—5 генов и упакован в белковую оболочку в форме многогранника. Такую же форму имеют частицы бактериофагов фХ 174, генетическим материалом которых служит одно-нитевая ДНК размером в 5375 нуклеотидов. Эти вирусы имеют всего 10 генов. Другие однонитевые (ДНК) фаги — fl, fd, М13 — имеют нитевидную форму. Крупные бактериофаги — Л, Т2, Т4 — содержат двунитевую ДНК, на которой располагается около 100 генов. Молекула ДНК фага X состоит из около 49 тыс. п. н., а ДНК так называемых Т-четных фагов (Т2, Т4) состоит из 182 тыс. п. н. Они имеют многогранную головку и хвостовой отросток, на конце которого находится аппарат адсорбции и впрыскивания ДНК в бактериальную клетку (рис. 9.10). [c.216]

    Форма, организация и функции клетки, т. е. ее жизнь, определяются ее белковым составом и активностью индивидуальных белков. Отсюда следует, что генетические инструкции должны содержать информацию, необходимую для точного синтеза набора белков, характерных для данной клетки. Эта информация закодирована в структуре очень больших молекул дезоксирибонуклеино-кислоты. При делении клетки необходимо точное воспроизведение этих молекул с последующим равным распределением информации между дочерними клетками. Эта информация должна-быть передана от ядра к белковым фабрикам — рибосомам. Изменения химической структуры дезоксирибонуклеиновой кислоты выявляются в виде мутаций в последующих поколениях. Наибольший вклад в расшифровку механизмов наследственности внесли работы, проведенные на непатогенной кишечной бактерии Es heri hia oli и на бактериофагах (бактериальных вирусах) последние обладают лишь ограниченным количеством генетической информации, содержащейся в нуклеиновой кислоте, которая окружена специфической белковой оболочкой они способны к самовоспроизведению только путем использования синтетического аппарата жи- [c.17]

    Неопровержимым доказательством того, что носителем наследственной информации вирусов и бактериофагов являются нуклеиновые кислоты, можно считать демонстрацию их инфекционных свойств. Так, было показано, что очищенная ДНК некоторых фагов, из которых наиболее известны фх174 и Я,, может заражать бактерии в отсутствие белковой оболочки. [c.39]

    Механизм действия бактериофагов на бактериальную клетку заключается в следующем. Бактериофаг состоит из белковой оболочки, в которой находится дезоксирибонуклеиновая кислота (ДНК) фага. При попадании одной фаговой частицы в культуру чувствительных к данному фагу бактерий, которые активно размножаются в жидкой питательной среде, она адсорбируется с помощью отростка на бактериальной клетке н разрыхл5Гет ее оболочку с помощью специального фермента. Затем белковая оболочка сокращается и ДНК фага впрыскивается в цитоплазму бактериальной клетки. Развитие бактериальной клетки прекращается, и в ней начинается синтез ДНК фага и его белка. В это время в клетке нельзя обнаружить частиц бактериофага. Только через 45—60 мни после созревания фага клетка набухает и оболочка ее разрывается (рис. 5), При лизисе клетки выходит около 100 частиц фага. На это.м заканчивается первый цикл размножения. бактериофага Около 100 частиц инфицируют 100 новых клеток бактерий, и начинается второй цикл размножения. Так продолжается до тех пор, пока ие лизируются все чувствительные клетки бактерий. [c.30]

    Посколысу хромосомы содержат белок и ДНК, возник вопрос, какое из этих веш еств участвует в передаче наследственных признаков. В 40-50-е годы XX в. появилось много экспериментальных указаний на то, что передача наследственной информации осуществляется молекулами ДНК. Одним из наглядных доказательств этого послужило изучение размножения бактериофагов — вирусов, паразитирующих на бактериях. Бактериофаг Т4, размножающийся в клетках кишечной палочки, состоит из ДНК и белковой оболочки с довольно сложной морфологией (рис. 4.2). Фаг имеет головку икосаэдрической формы, в которой тесно упакована одна молекула ДНК, и полый цилиндрический хвост, от конца которого отходят шесть тонких нитей. Хвост имеет двойные стенки и представляет собой как бы трубку, вставленную в трубку большего диаметра. [c.118]

    Новое подтверждение генетической роли ДНК было получено при изучении одного вируса (бактериофага), заражающего Е. oli. Бактериофаг Т2 состоит из сердцевины (ДНК), заключенной в белковую оболочку. В 1951 г. Роджер Херриот (Roger Herriott) предположил, что вирус, очевидно, действует, как крошечный шприц для подкожных инъекций, наполненный трансформирующим началом вирус как таковой никогда не проникает в клетку только отросток вступает в контакт с клеткой-хо- [c.9]

    Внешний вид микробов. Наблюдать ультрамикробы удалось только в электронный микроскоп, дающий увеличение до 45 000 раз. Вирусы (рис. 36) представляют собой частицы, состоящие из белковых. веществ и нуклеиновой кислоты (ДНК или РНК ) и липоидной оболочки. Они не обладают обычной клеточной структурой. К неклеточной форме жизни относятся также бактериофаги (рис. Ъ7). С>ни представляют собой удлиненные образования с утолщенным концом . Вид бактерий отличается исключительным однообразием. Все извест- [c.248]

    Можно ли доказать линейное соответствие между последовательностью аминокислот в известной белковой структуре и последовательностью оснований в ее мРРЖ Да, это было, например, показано для белка оболочки бактериофага R17 и участка его РНК (Adams et, 1969). [c.12]


Смотреть страницы где упоминается термин Бактериофаги белковая оболочка: [c.161]    [c.140]    [c.92]    [c.162]    [c.13]    [c.100]    [c.314]    [c.56]    [c.142]    [c.495]    [c.314]    [c.258]    [c.687]   
Молекулярная биология клетки Том5 (1987) -- [ c.145 , c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка



© 2025 chem21.info Реклама на сайте