Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зажигание искровое

    При атмосферном давлении, при конфигурации разрядного промежутка, не допускающей возникновения коронного разряда, и при мощности источника тока, недостаточной для возникновения и поддержания стационарного дугового разряда, искрово разряд является конечной стадией развития ири переходе из несамостоятельного разряда в самостоятельный. В этом случае напряжение зажигания искрового разряда, или искровой потенциал, равно напряжению зажигания самостоятельного разряда и при прочих равных условиях однозначно зависит от расстояния между электродами. Поэтому измерение того расстояния между двумя шаровыми электродами, при котором между ними проскакивает искра в атмосферном воздухе, служит для измерения высокого напряжения в высоковольтной технике. [c.350]


Рис. 139. Типичная конструкция горячего и холодного зажигания искровой свечи. Рис. 139. <a href="/info/1633886">Типичная конструкция</a> горячего и холодного зажигания искровой свечи.
    Искровой разряд как конечная стадия развития возникает при мощности источника тока, недостаточной для поддержания стационарного дугового или тлеющего разряда. Напряжение зажигания искрового разряда достаточно велико, однако после пробоя разрядного промежутка, когда его сопротивление становится очень малым, в цепи возникает импульс тока большой силы, напряжение на разрядном промежутке падает до значения, меньщего напряжения погасания искрового разряда, и разряд прекращается. После этого напряжение на разрядном промежутке вновь повышается до прежней величины, и процесс повторяется. Максимальная сила тока в импульсе при искровом разряде изменяется в широких пределах в зависимости от [c.505]

    При вынужденном воспламенении, или, иначе говоря, зажигании (искровом или накаленной поверхностью), играет роль скорость движения источника зажигания и газовой смеси относительно друг друга а именно, трудность или легкость зажигания зависит от того, покоится или движется газовая смесь, а когда движется, то от ее скорости, наличия турбулентности и величины ее интенсивности. Гидродинамическое состояние газовой смеси является также важным фактором при различных типах самовоспламенения. [c.20]

    Некоторые компоненты природных и промышленных газовых смесей, такие, как водород и насыщенные углеводороды, для которых нет удобных абсорбционных методов, можно определить при смешивании с кислородом и сгорании в специальной пипетке (рис. XIV. 4). Сначала в пипетку вводят точно измеренный объем кислорода и при помощи электрического тока нагревают платиновую проволочку. Затем через капилляр медленно пропускают струю анализируемого газа, горючие компоненты которого сгорают при контакте с раскаленной проволочкой. В других типах пипеток, предназначенных для этой цели, сгорание может осущест вляться методом взрыва благодаря зажиганию искрового разряда Б смеси анализируемого газа и кислорода или пропусканию этой смеси над нагретым кварцевым капилляром с платинированным асбестом или платиновыми нитями. [c.434]


    Минимальную энергию зажигания искрового разряда, необходимую для нагрева от начальной температуры до температуры горения Гг шарообразного объема, радиус которого пропорционален ширине зоны пламени бпл, можно представить в виде  [c.99]

    Для каждого горючего аэрозоля характерно определенное время контакта с каналом искрового разряда, за которое в нем формируется начальное ядро пламени [67. Чем меньше это время, тем больше должна быть энергия разряда для зажигания аэрозоля. Поэтому энергия зажигания искровым разрядом с увеличением скорости движения аэрозоля должна возрастать. [c.77]

    Рлс. 96. Осциллограмма зажигания искрового разряда в воздухе при атмосферном давле-цип. Расстояние между электродами 1 с.п. [c.245]

    При искровом зажигании с помощью электрической искры в газовой смеси возникает нестационарное самораспространяющееся пламя. При успешном зажигании искровой разряд инициирует узкий очаг пламени, возникающий почти мгновенно, развивающийся при некоторых условиях в самораспространяющееся пламя. Однако при зажигании может наблюдаться и кратковременное локальное распространение пламени, которое затем охлаждается и гаснет. Это случай неудачного искрового зажигания, называемого отказом зажигания. Условия, определяющие характер искрового зажигания, зависят от характеристик газовой смеси и электрической искры. Для газовой смеси основными характеристиками являются ее состав, температура, давление, динамическое состояние смеси — покой или течение, причем в случае течения смеси определяющими для зажига-ь ия искрой являются параметры этого течения. Электрическая искра характеризуется энергией, параметрами разряда, полярностью, длиной искрового промежутка. [c.16]

    Согласно теории лавинных разрядов природа катода должна играть существенную роль в процессе пробоя. Между тем оказалось, что при атмосферном давлении напряжение зажигания искрового разряда не зависит от материала катода в пределах ошибок измерения. [c.350]

    НАПРЯЖЕНИЕ ЗАЖИГАНИЯ ИСКРОВОГО РАЗРЯДА [c.547]

    Для подсчёта потенциала зажигания искрового разряда и Лёб предлагает следующий путь, предполагая, что 8 и р даны, [c.570]

    Процесс зажигания движущихся потоков изучался в работах Хитрина и Гольденберга [6], которые представили тепловую теорию зажигания Кумагаи и Кимура [7], которые изучали зажигание нагретыми проволоками Светта [8], изучавшего зажигание искровыми разрядами большой длительности. [c.73]

    Необходимо отметить, что нижний концентрационный предел воспламенения аэрозоля обычно лежит ниже той концентрации, при которой возможно зажигание искровым разрядом. Минимальная энергия зажигания определяется при концентрациях примерно в 5— 0 раз больше предельной. Установлено также, что при постоянной поверхности твердой фазы в единице объема смеси независимо от диснерсности веществ, т. е. при постоянном значении произведения концентрации частиц пыли на их удельную поверхность, достигается минимум зажигающей энергии (рис. 28) [65]. [c.78]

    Элементарные процессы в искровом разряде и теория стримеров. Напряжение зажигания искрового разряда между плоскими электродами при значениях / с >200 мм рт. ст.-см Отличается от значений, подсчитанных по теории лавинных разрядов. Многочисленный ряд наблюдений над искровым разрядом и твёрдо установленные экспериментальные факты приводят к ряду других не только количественных, но и качественных расхождений с ЭТ011 теорией  [c.350]

    Искровой разряд возникает при большой разнице потенциалов между электродами как прерывистая и своеобразная форма разряда, сменяющая слабые токи несамостоятельного разряда. При не слишком больших расстояниях между электродами и не слишком больших давлениях газа напряжение зажигания искрового разряда (искровой потенциал) Уз может быть правильно рассчитано по теории Тауисеггда. Поэтому к искровому разряду подходили с точки зрения теории Таунсенда-Роговского и принимали развитие канала искры за развитие электронных лавин. Роговский предпринял дополнение теории Таунсенда с учётом пространственных зарядов для того, чтобы устранить противоречие между установленным им экспериментально чрезвычайно коротким временем формирования искрового разряда (<ЫО се/с при расстоянии между электродами в 1 сж и нормальном атмосферном давлении) и временем в 10 —10 сек, необходимым по теории Таунсенда для развития разряда. [c.396]

    Напряжение зажигания искрового разряда. При атмосферном давлении, при конфигурации разрядного промежутка, не допускающей возникновения коронного разряда, и при мощности источника тока, недостаточной для возникновения и поддержания стационарного дугового разряда, искровой разряд является конечной стадией развития ори переходе из несамостоятельного разряда в самостоятельный. В этом случае напряжение зажигания искрового разряда, или искровой потенциал, равно напряжению зажигания самостоятельного разряда и при прочих рашых условиях однозначно зависит от расстояния между электродами Поэтому издавна измерение того расстояния между двумя шаровыми электродами, при котором между ними при какой-либо разности потенциалов проскакивает искра в атмосферном воздухе, служит для определения этой разности потенциалов. Этот способ является общепринятым в высоковольтной технике методом измерения высоких напряжений. Вопрос об искровом потенциале в атмосферном воздухе для шаровых электродов подвергался очень детальному теоретическому и экспериментальному исследованию [1884, 1885, 1877, 1945, 1947, 1954]. Построен ряд формул и таблиц для определения искрового потенциала из расстояния между шарами и для поправок на [c.547]


    Недостаточность теории Таунсенда-Роговского для объяснения явлений искрового разряда. Стримеры. В случаях, когда пробой завершается сразу и коронвого разряда не возникает, напряжение зажигания искрового разряда при значениях произведения рй > 200 см мм Hg отличается от значений, подсчитанных по теории Таунсенда-Роговского. Более того, многочисленный ряд наблюдений различных физиков над искровым разрядом и твёрдо установленные ими экспериментальные факты приводят к ряду не только количественных, но и качественных расхождений с теорией разряда Таунсенда-Роговского [1870, 1917, 1913]. Эти расхождения между теорией и экспериментом можно распределить по следующим основным группам. [c.548]

    Расстояние между шарами согласно табл. 3 (стр. 918). Скоросгь задувания искрового промежутка 3 м/сек. Промежуточные соединения возможно короткие. Зажигание искрового промежутка либо путем временного сближении шаров, либо шунтированием воздушного зазора. [c.937]


Смотреть страницы где упоминается термин Зажигание искровое : [c.398]    [c.422]    [c.549]   
Горение (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте