Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовые системы характеристика

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    Так как единица массы адсорбента может обладать разной величиной удельной поверхности, то величина удельного удерживаемого объема (как и соответствующие величины константы изотермы адсорбции Генри Ка.с или Ка.р) в случае газо-адсорбционной хроматографии не является характеристикой природы системы данный компонент газовой смеси—поверхность адсорбента. Физико-химической константой, зависящей при данной температуре только от природы этой системы, будет абсолютная величина удерживаемого объема, т. е. отнесенная к единице поверхности твердого тела, а именно  [c.561]

    В энергетических или технологических процессах, связанных с использованием газообразного топлива, существенным является то обстоятельство, что они протекают в газовой фазе, поскольку окислитель (кислород, воздух либо кислородсодержащие смеси) также находится в газообразном состоянии. Топливо и окислитель могут смешиваться либо непосредственно в устройстве, в котором протекает процесс (горелке, сопловой насадке, реакторе), либо заранее, образуя предварительно перемешанную однородную гомогенную смесь. Если в такой смеси инициировать сложный химический процесс, то его характеристики уже не будут зависеть от условий смешения. В тех случаях, когда процесс протекает так быстро, что его характерные времена много меньше характерных времен масс,-теплообмена с окружающей средой, он целиком определяется лишь свойствами исходной смеси. Если при этом не возникает пространственных концентрационных неоднородностей, т. е. в ходе процесса состав реагирующей системы в любой точке реакционного пространства остается однородным (за счет, например, интенсивного перемешивания или циркуляции), то все характеристики процесса являются функциями только времени, а не координат (так называемая сосредоточенная постановка задачи). [c.11]

    Важной эксплуатационной характеристикой катализаторов является также их механическая прочность, которая выражается устойчивостью к раздавливанию и истиранию. При несоответствии катализатора заданным требованиям прочности в процессе эксплуатации образуются осколки и пыль, которые накапливаются в аппаратах и трубопроводах, затрудняют движение газовой смеси и вызывают увеличение перепада давления в системе. Обычно индекс прочности на раскалывание промышленных катализаторов риформинга составляет 0,97—1,05 кг/мм. [c.12]

    Пены представляют собой высококонцентрированные дисперсные системы, состоящие из газовых пузырьков (ячеек), разделенных тонкими пленками жидкости. Пленки образуют жесткий каркас, в результате чего иена обладает устойчивостью. Устойчивость пены зависит от наличия поверхностно-активных веществ (ПАВ), вязкости жидкости, давления паров жидкости, условий испарения жидкости с поверхности п других факторов. Характеристикой устойчивости пенЕ) является время, необходимое для полного разрушения всего столба или определенной доли его. [c.145]


    Рассмотрение термодинамических законов показывает, что если газовые законы дают характеристику состоя шя газовой системы только на основании ее внешних факторов (Р, [c.160]

    Этот модуль может находиться в одной или нескольких точках газовой системы. Если газ предназначается потребителю, то ограничениями являются все или некоторые из следующих характеристик  [c.12]

    Рассмотрим идеальный процесс разделения исходной смеси на фракции. На рис. 7.2 показана схема идеального устройства для разделения смеси на фракции, включающие соответственно А/ компонентов (А,-ей). В отличие от схемы полного разделения, полупроницаемые мембраны установлены на входе в приемные камеры и обеспечивают обратимое смешение компонентов фракции. Температура во всех элементах системы одинакова. Давления в камерах также одинаковы и равны давлению исходной смеси. Мембранные парциальные давления р, и Ра соответствуют условиям мембранного равновесия чистого вещества и смесей в соответствующих камерах, затраченная извне минимальная работа разделения п молей исходной смеси на фракции с числом молей п,- определится как сумма затраченных работ обратимого изотермического сжатия чистых газов от их мембранных парциальных давлений р,, соответствующих равновесию с исходной смесью, до аналогичных характеристик Ра, равновесных газовым фазам фракций. Для одного моля исходной смеси минимальная работа разделения на фракции определится суммой [c.233]

    Процессы адсорбционного равновесия носят статистический характер, поэтому одним из возможных путей решения задачи теоретического обоснования существующих уравнений изотерм адсорбции является использование вероятностного подхода, причем в качестве критерия правдоподобия описания используется информационная энтропия [80]. Согласно информационному принципу максимальной энтропии [79], достоверная отображающая функция распределения, которая содержит наибольшую информацию о результатах измерения случайных величин, должна обладать максимальной энтропией. По одному из положений теории объемного заполнения адсорбент характеризуется предельным объемом адсорбционного пространства, заполнение которого связано с уменьшением свободной энергии газовой фазы А. Кроме того, любая система адсорбент — адсорбат определяется некоторой энергией Е, характеризующей энергетический механизм взаимодействия молекул в зависимости от свойств системы. Характеристику заполнения объема адсорбционного пространства можно рассматривать как некоторую функцию распределения и ее плотности, где параметром функции распределения будет энергетический симплекс [81]  [c.223]

    Применение термодинамики как метода обобщения экспериментального материала имеет большое значение в развитии теоретической химии. Однако переход к числовым величинам может быть осуществлен только для тех систем, для которых известны уравнения состояния. В настоящее время в термодинамике широко используется лишь уравнение для простейших систем, так называемых — идеальных. Строгая теория состояния реальных систем еще не создана. Применение же уравнений состояния для реальных систем приводит к очень сложным и громоздким соотношениям между такими характеристиками системы, как давление, температура, концентрация и др. Поэтому для термодинамических расчетов в реальных системах получили большое распространение методы, основанные на использовании эмпирических данных. Одним из таких методов расчета является метод летучести в применении к газовым системам и метод активности в применении к растворам. [c.12]

    В газовых системах, для характеристики которых применимо уравнение состояния идеальных газов Клапейрона-Менделеева, значение парциального давления любого компонента можно вычислить так  [c.65]

    С 1 7,7. Для остальных ТЭ батареи это отношение увеличивается. Соответственно этому распределению примесей батарея ТЭ с последовательной газовой системой имеет более высокие электрические характеристики при прочих равных условиях (Со К), чем батарея с параллельной схемой (рис. 5.32). [c.271]

    Рассмотрение термодинамических законов показывает, что если так называемые газовые законы, в том числе и уравнение Менделеева— Клапейрона, дают характеристику состояния газовой системы только [c.210]

    Законы переноса вещества и тепла идентичны. Из-за развитой внутренней поверхности имеет место интенсивный теплообмен между обеими фазами, приводящий к гомогенизации системы. Поэтому становится вполне приемлемым использование закона Фурье q = — Я-эф grad Т, определяющего плотность теплового потока q в зависимости от градиента температуры и величины коэффициента эффективной теплопроводности зерна катализатора Хэф. Экспериментальные значения Хдф, найденные различными авторами, например [73], свидетельствуют о том, что на теплопроводность пористых зерен относительно слабо влияют теплофизические свойства твердого материала. Большое влияние оказывает теплопроводность газовой фазы. Однако решающее значение на величину зф оказывают геометрические характеристики структуры, особенно величины площадей наиболее узких мест или окрестности областей спекания, сращивания, склеивания частиц друг с другом. Для приближенной оценки величины Хэф можно рекомендовать монографию [74], в которой представлен значительный объем экспериментальных данных по дисперсным материалам. [c.157]


    Рассмотрение термодинамических функций показывает, что если газовые законы дают характеристику состояния газовой системы только на основании ее внещних факторов (Р, У и Т"), то первый и второй законы термодинамики характеризуют состояние любой системы изменением ее внутренних факторов (А11, А, А/, А5, АГ), которые дают не только количественные соотнощения термодинамических закономерностей, протекающих в системе процессов, но указывают также на их направленность (см. ниже Свободная энергия ), В соответствии с первым и вторым законами термодинамики для любой системы при обратимых процессах имеют место следующие соотношения между различными видами энергии и переходом ее в работу. [c.152]

    Двухколоночная газовая система. Универсальные детекторы ДИП и ДТП, специфические ЭЗД - для определения галоген- и кислородсодержащих вешеств, ТИД - азот- и фосфорсодержащих органических соединений, ДПФ - серо- и фосфорсодержащих веществ. Возможна одновременная работа любой пары детекторов. Регулирование большей части режимных параметров работы хроматографа с помощью микро-ЭВМ, непрерывная выдача информации о фактических значениях параметров. Автоматическая обработка выходной информации (интегрирование параметров пиков, расчет градуировочных характеристик, расчет концентраций, оценивание метрологических характеристик и логарифмических индексов удерживания). [c.98]

    Естественен вопрос, почему именно эту проблему мы относим к числу наиболее значимых. Проиллюстрируем это на одном наиболее ярком примере. Известно, что в мембранной технологии разделения газов, паров, жидкостей целесообразность и эффективность процесса зависят, главным образом, от выбора полимерной основы мембраны и ее структуры, поскольку именно эти параметры определяют в конечном счете производительность аппаратов и селективность процесса [139—141]. Решение этой задачи каждый раз, для каждой конкретной газовой системы, требует проведение длительных трудоемких измерений коэффициентов проницаемости (Р), диффузии (О) и растворимости (а). В то же время, располагая аналитической взаимосвязью между молекулярными характеристиками пенетрантов и их диффузионными параметрами, можно было бы уже на первом этапе исследования значительно упростить задачу выбора полимерного материала, наметить пути его модификации, осу- [c.74]

    Качественный анализ в газовой хроматографии. Выбор системы характеристик удерживания. [c.55]

    Анализ энергетической эффективности мембранной разделительной системы предполагает как интегральную оценку энергетических затрат на реализацию процесса в целом, так и изучение распределения этих затрат по отдельным стадиям технологического процесса с целью его оптимизации. Для решения этой задачи необходимо установить зависимость критерия энергетической эффективности от проницаемости и селективности мембран, термодинамических и гидродинамических параметров газовых потоков в мембранном модуле и других конструктивных и эксплуатационных характеристик. Анализ сложной мембранной установки включает выявление связи между интегральными энергетическими затратами на разделение газовой смеси и различными вариантами организации газовых потоков. В лю- [c.228]

    Разработка нефтяных и газовых месторождений осуществляется не единичными скважинами. Для обеспечения необходимого уровня добычи жидкости или газа нужно определенное количество скважин. Сумма дебитов этих скважин должна обеспечить заданный отбор из месторождения. Поэтому в фильтрационных расчетах, связанных с разработкой месторождний, необходимо рассматривать множество скважин, размещенных определенным образом на площади нефтегазоносности, в зависимости от параметров пластов и свойств насыщающих их флюидов. При этом возникают гидродинамические задачи определения давлений на забоях скважин при заданных дебитах или определения дебитов скважин при заданных из технических или технологических соображений забойных давлениях. Аналогичные задачи возникают при рассмотрении системы нагнетательных скважин, используемых для поддержания пластового давления. В этих случаях также целесообразно схематизировать геометрию движения. При этом рассматриваются наиболее характерные плоские нерадиальные потоки. Проанализировать все возможные геометрии фильтрационных течений на представляется возможным, да в этом и нет необходимости, так как владея общей методологией расчета, можно определить основные характеристики таких потоков. [c.103]

    С целью количественного сопоставления теоретических и экспериментальных характеристик газового облака можно привлечь обширные экспериментальные данные для двухмерных слоев , а также позднейшие данные Стюарта о трехмерных псевдоожиженных системах. Стюарт определяет радиусы пузыря Г(, и облака как расстояния от центров кривизны верхней части поверхностей пузыря или облака до вершины пузыря или облака, соответственно. Из этого определения следует, что, зная положение точки инверсии скоростного поля и, можно рассчитать радиус [c.114]

    Псевдоожиженную плотную фазу можно рассматривать как невязкую капельную жидкость, постулируя, что для каждой частицы, сила трения газового потока в любой момент времени уравновешивается силами тяжести и инерции (таким образом, из рассмотрения исключаются соприкосновение частиц и касательные напряжения ). Если по каким-либо причинам псевдоожижение нарушается, плотную фазу в аспекте ее текучести следует рассматривать как механическую систему отдельных твердых частиц. Свойства этой системы следует выражать в зависимости от таких характеристик текучести, как когезионный фактор, угол внутреннего трения и срезающие усилия. [c.567]

    На рис. 141 представлена фазовая диаграмма системы этан—вода . Подобная общая характеристика может быть применена ко всем углеводородным системам. Линия ВЕ соответствует равновесию системы, содержащей газ, гидраты и воду, линия FEG представляет собой точки росы углеводородов (в данном случае этана). Точкам является квадрупольной в ней существует две жидкие фазы (вода и углеводород), одна твердая фаза (гидрат) и газовая фаза. Линия BD соответствует температуре замерзания воды, левее нее могут существовать две твердые фазы (лед и гидрат). [c.216]

    Если учесть всегда присутствующие в реакторе флуктуации температуры (внутри и на входе), концентрации реагентов, неточность сведений о кинетике химического процесса, погрешности огрубления модели (например, предположение о пространственной однородности слоя катализатора, позволяющее использовать одномерную по пространственным переменным модель), естественно считать состояния, соответствующие различным значениям Скорости подачи газовой смеси, равновероятными. Это касается только тепловых характеристик системы. Если функция u t) кусочно-постоянна и минимальное время imm сохранения ее постоянного значения намного больше времени пребывания смеси в реакторе, т. е. imm Тн, то концентрационные характеристики успевают отреагировать на переключения и даже достичь квазистационарного состояния. [c.110]

    Коррозионная агрессивность — одна из важнейших эксплуатационных характеристик топлив. При эксплуатации современных двигателей наблюдаются два типа коррозии жидкофазная коррозия агрегатов топливной системы газовая высокотемпературная коррозия деталей газовоздушного тракта двигателя. [c.75]

    На НПЗ и НХЗ компрессоры используются для сжатия технологических газов на установках каталитического риформинга, гидроочистки, изомеризации, каталитического крекинга, пиролиза, ок-сосиптеза и других, в холодильных системах установок алкилирования, депарафинизации масел, обезмасливания гача и т. д. В общезаводском хозяйстве компрессоры служат для сжатия воздуха, инертного и факельного газов. Наиболее часто применяются на НПЗ и НХЗ центробежные и поршневые (оппозитные, угловые, вертикальные) машины. Б качестве приводов к компрессорам используются электродвигатели, паровые и газовые турбины. Характеристика серийно изготавливаемых компрессоров приводится в каталогах, справочниках и номенклатурных перечнях машиностроительных заводов [24, 34—35].  [c.119]

    Формула (21) будет полезной при расчете скорости горения только в том случае, если известны значения фигурирующих в этой формуле параметров. Тепловыделение в газе, теплоемкость и теплопроводность, а также характеристики реакции в газовой фазе — все эти величины, цо крайней мере нринциниально, могут быть определены в экспериментах, выполненных с чисто газовыми системами. Две другие величины, Т о и Г , требуют дальнейшего обсуждения. [c.282]

    Сравнение расчетных переходных функций с экспериментальными динамическими характеристиками проводили на лабораторной и промышленной установках. Лабораторная установка представляла собой насадочную колонну диаметром 150 мм, заполненную кольцами Рашига размерами 15x15x2 мм на высоту 1 м. В качестве двухфазной системы использовали систему воздух-вода. Диаметр промышленной колонны составлял 2,4 м насадкой служили керамические кольца Рашига размером 60x60x8 мм высота слоя насадки составляла 12 м. Давление в колонне 29— 31 атм температура газовой фазы 50—60° С температура жидкости 6—10° С. Для лабораторного и промышленного аппаратов получено удовлетворительное совпадение экспериментальных и расчетных динамических характеристик (см. рис. 7.22). На рисунке отчетливо виден характерный скачок по величине ДР, наблюдающийся в момент подачи возмущения по расходу газа и характеризуюпщй практически мгновенный переход системы в промежуточное состояние т[. После указанного скачка картина переходного процесса по каналу 2 аналогична процессу, наблю- [c.414]

    Мембранный перенос массы является результатом сопряжения нескольких процессов, протекающих в мембране, прежде всего диффузии и сорбции компонентов газовой смеси существенно также влияние дополнительных связей, возникающих в мембранной системе при нарушении принципа аддитивности. Только в газодиффузионных пористых мембранах, где удается организовать свободномолекулярное течение, процессы проницания газов независимы. В общем случае процессы в мембранах вза-имно-обусловлены, а такие интегральные характеристики мембран, как проницаемость Л и селективность а, являются результатом сопряжения отдельных процессов. Сорбционно-диффу-зионная модель проницания чистых газов через гомогенные непористые мембраны служит примером сопряжения процессов поверхностной сорбции, растворения и диффузии. Предполагается, что характерные времена этих процессов существенно раз- [c.15]

    Унос часто играет значительную роль в технологии процессов с псевдоожиженным слоем, так как псевдоожижаемый материал обычно содержит частиц разного размера. Кроме того, псевдоожижение многих материалов сопровождается пылеобразованием в результате их истирания. Образовавшаяся мелочь легко подхватывается потоком ожижающего агента и выносится из аппа" pama. Почти всегда по технологическим, экономическим и санитарным соображениям эти мелкие частицы должны быть либо регенерированы, либо прост отделены от ожижающего агента. Разумеется, для аффективного улавливания-вынесенных твердых частиц необходимо знать их характеристики и особенна концентрацию в несущем газовом потоке. Следовательно, необходимо уметь. оценивать для псевдоожиженной системы начало уноса и его интенсивность  [c.547]

    Для характеристики условий полного перехода различных газонефтяных смесей в газовую фазу при разных температурах приведены кривые зависимости давления схождения этих смесей (Рсу) от температуры (рис. 19). Под давлением схождения в нефтяной литературе понимают то давление при данной тем1пературе системы, при котором константы фазового равновесия всех ее компонентов становятся равными единице. В. термодинамике это давление называют критическим давлением системы при дайной температуре. Оно отличается от истинного критического давления, характерного для системы при ее,критической температуре. Кривые (см. рис. 19) построены по материалам, полученным при изучении фазового равновесия ряда систем, состоящих из широких нефтяных фракций и газа, при пх весовом соотношении 1 1 и при температурах 60, 100, 130 и 160° С. На основе этих данных были рассчитаны константы фазового равновесия (/( УВ нефти и экстраполированы до [c.39]

    Скорость теплоотдачи растет с повышением температуры линейно, так как тепловой поток прямо пропорционален градиенту температуры. Начиная с некоторой температуры, скорость теплоотдачи отстает от скорости теплообразования и реагирующая система саморазогревается, причем этот процесс идет ускоренно. В результате при повышении температуры реакция может закончиться воспламенением и взрывом. Температура, после достижения которой нарушается тепловое равновесие, называется температурой самовоспламенения она служит характеристикой жидкого и газового топлива. Температуру воспламенения Твоспл определяют по уравнению  [c.30]

    Формирование неравномерного поля скоростей в фонтанирующем слое происходит под воздействием кинетической энергии подводимой извне газовой струи. В свою очередь, гидродинамическая структура фонтанирующего слоя оказывает воздействие на перепад давления газа в слое, а следовательно, и на подвод энергии со стороны газовой струи, т. е. гидродинамические характеристики слоя — поле скоростей частиц обрабатываемого материала и перепад давления в слое — связаны между собой. Эта физическая взаимосвязь и отражает энергетическое единство гетерофазной системы материал — газ . Задача состоит в том, чтобы ьскрыть это единство на основании теории диаграмм связи, формируя тем самым математическое описание гидродинамики фонтанирующего слоя. [c.256]

    Предложен общий метод для решения обратной задачи в случае обработки экспериментальных данных по равновесиям в газовой фазе. Метод позволяет проанализировать все возможные гипотезы о молекулярном составе изучаемой системы, рассчитать термодинамические характеристики независимых реакций, получить взаимно-согласованные значения термодинамических свойств системы, а также наметить пути планирования уточняющих экспериментов. Метод иллюстрируется на примерах обработки данных статического метода, метода потока и метода взрыва для системы кревший—хлор—водород. [c.192]

    Гетерогенный реактор с твердыми частицами катализатора -это динамическая система, в которой в просфанстве и во времени объединены сложные физико-химические процессы, происходящие на поверхности и внутри пористого катализатора, внутри и на фаницах реакционного объема в целом. В стационарном режиме все потоки объединены материальными и энергетическими балансами. Поэтому редко удается организовать каталитический процесс так, чтобы все его уровни - от поверхности катализатора до контактного отделения - работали в режиме, соответствующем оптимальному. Например, состав, сфуктура и свойства катализатора определяются состоянием газовой фазы. Следовательно, повлиять существенно на характеристики катализатора, работающего в стационарных условиях, не представляется возможным, так как состав газовой фазы предопределен степенью превращения и избирательностью. В нестационарном режиме, оказывается, можно так периодически изменять состав газовой фазы или таким образом периодически активировать катализатор, что его состояние будет значительно [c.304]

    Если в химической реакции участвуют вещества в газовом состоянии, то на энергетическом эффекте такой реакции отразится изменение объема и давления системы, которое в ряде случаев неизбежно. В связи с этим энергетическая характеристика определенного количества вещества включает кроме внутренней энергии и произведепие давления на объем рУ, выраженное, конечно, [c.77]

    Данным обстоятельством является наличие в подземных водах рассматриваемых горизонтов растворенных газов нефтяного ряда и азота. При этом содержание газов в подземных водах горизонта Д, и отдельных зонах горизо1Ггов ДП-1У соизмеримо с газовыми факторами нефтей и составляет от 0,3 до 20 м /м Общее содержание углеводородных газов 60 - 75%, из них этана и высших - от 4 до 38%. Тип газа - азотно-метановый. По существу это естественные водогазовые смеси, которые определяются однозначно как одно из эффективных средств для воздействия на продуктивные пласты с целью повышения коэффициента нефтеизвлечения. Возникающие при этом трудности технологического плана по добыче водогазовой смеси и ее доставке в неизменно.м виде к. месту воздействия были успешно решены созданием жесткой системы водозаборная - нагнетательная скважина. Анализ проведенных модельных исследований показал, что применение пластовых водогазовых смесей для воздействия на остаточные запасы нефти в зависимости от геолого-физической характеристики пластовых систем, концентрации и состава газа позволяет увеличить коэффициент нефтеотдачи на 3,5 - 7,1%. [c.222]

    Все компоненты реакционной системы, входящие в кинетические уравнения (4.6), подразделяются на три группы углеродные комплексы на поверхности (O) и в объеме (f) коксовых отложений,.компоненты газовой фазы (х). Состояние поверхности всегда квазистащюнарно по отношению к объемным характеристикам. Физически это объясняется различной массоемкостью реакционных зон, так как масса монослоя поверхности гораздо меньше общей массы коксовых отложений. Поэтому степень покрытия поверхности различными комплексами (O) определяется решением системы нелинейных алгебраических уравнений  [c.67]

    Для анализа предельных случаев чрезвычайно полезен и нагляден геометрический подход [35]. Так, можно построить множество достижимых показателей процесса при стационарном, квазистационарном и скользящем режимах. Квазистационарный процесс не может быть эффективным, если отсутствуют ограничения на некоторые средние характеристики процесса. Если таких ограничений нет, то оптимальным является стационарное управление и = onst, при котором обеспечивается максимум какого-либо критерия /. Скользящий режим может обеспечить выигрыш по сравнению со стационарным состоянием катализатора лишь при нелинейных зависимостях скоростей стадий от концентраций газовой фазы либо при нелинейной зависимости критерия / от некоторых параметров процесса. Если Л/, или t Mf, то, как это подробно было обсуждено, динамические свойства системы оказывают существенное влияние на показатели нестационарного процесса. [c.48]

    В заключение отметим, что для нестационарного способа обезвреживания газовых выбросов промышленных предприятий целесообразно использовать окисные катализаторы. Классификация катализаторов глубокого окисления органических соединений и оксида углерода, их важнейшие характеристики приведены в ряде обзорных работ [12—14], Катализаторы на основе металлов платиновой группы являются наиболее активными и универсальными. Однако благородные металлы имеют высокую стоимость. В этом плане перспективны катализаторы на основе оксидов или солей переходных металлов (меди, кобальта, хрома, никеля, марганца), которые, несколько уступая по своей активности катализаторам, содержащим благородные металлы, значительно дешевле и доступнее. В научной и патентной литературе описаны разнообразные каталитические системы, применяемые для обезвреживания токсичных выбросов. Перечислим здесь лишь несколько марок окисных катализаторов, вы-1гускаемых в СССР. [c.174]

    Осуществимость газового реактора можно исследовать на основе сравнительно простой модели. Задача состоит в определении особенностей и размеров такой системы, исходя из некоторых приемлемых характеристик. Для этого исследуем следующие простейшие модели 1) реактор — газовая сфера радиусом Яд без отран ателя 2) критический реактор в стационарном состоянии 3) источником энергии является только реакция деления 4) внешняя граница сферы имеет абсолютную температуру Т=Т Яд = Тд, 5) газовая смесь — инертная система при некотором фиксированном давлении р 6) потери эпергии из газа существуют только благодаря проводимости, поэтому пренебречь радиацией, конвекцией н силами гравитации 7) односкоростное уравнение диффузии дает достаточно правильное представление о нейтронной физике 8) экстраполированное граничное условие применимо 9) коэффициент диффузии пространственно инвариантен (предполагается некоторое среднее значение для смеси) 10) коэффициент теплонроводностн может быть представлен некоторым средним значением f. [c.184]

    В качестве примера расчета массообменного реактора для очистки газовых выхлопов от вредных примесей ниже рассмотрен принцип расчета пенного газопромывателя, работающего при режиме, близком к полному смешению. Реактор этого типа может служить для очистки газов от аэрозолей, газообразных и парообразных вредных примесей. В последнем случае применяют многополочпые пенные аппараты. Расчет любого многополочного аппарата сводится к определению необходимой поверхности массообмена и требуемого числа полок. Эти величины можно рассчитать по известным значениям коэффициента массопередачи км или КПД одной полки аппарата т). Значения йм и т] определяются экспериментально для различных систем в зависимости от гидродинамических условий процесса и физико-химических характеристик системы. Некоторые критериальные уравнения, применяемые для определения к и ti, приведены в ч. I. [c.241]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]


Смотреть страницы где упоминается термин Газовые системы характеристика: [c.269]    [c.165]    [c.11]    [c.92]    [c.422]   
Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.156 ]




ПОИСК







© 2025 chem21.info Реклама на сайте