Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурообразование в присутствии дисперсных наполнителе

    В монографии рассмотрены современные представления о природе твердения вяжущих веществ, включая вопросы состава тампонажных растворов, стехиометрии продуктов гидратации портландцемента, физико-химических основ процессов формирования дисперсных структур вяжущих веществ. Особое место занимают исследования механизма процессов структурообразования в дисперсиях минеральных вяжущих — трехкальциевого силиката, трехкальциевого алюмината, трехкальциевого алюмината в присутствии гипса и наполнителя, тампонажных цементных дисперсий. [c.6]


    Интересно было проследить, как влияет на кинетику синтеза прочности наполнитель, который способен изменить процесс структурообразования путем поглощения ионов из жидкой фазы, тем самым ускоряя гидратацию создать дополнительное число коагуляционных контактов связать часть воды своей развитой поверхностью в мелких порах но не способного из-за отсутствия подходящих химических компонентов к сколько-нибудь заметному накоплению новообразований, обладающих вяжущими свойствами. В качестве такого наполнителя в наших опытах использован активированный уголь и палыгорскит при низкой температуре. Получены данные (табл. 10), отражающие кинетику повышения прочности образцами из чистого цемента, цемента с углем и цемента с палыгорскитом при разных температурах. В течение первых суток присутствие дисперсного наполнителя в условиях нормальных температур твердения обеспечивает более быстрое упрочнение образцов, но в дальнейшем прочность на сжатие таких образцов невелика. В связи с постепенным накоплением продуктов химического взаимодействия палыгорскита и вяжущего через несколько суток прочность образцов глино-цемента становится выше при нормальных температурах, чем у соответствующих образцов угле-цемента. [c.148]

    СТРУКТУРООБРАЗОВАНИЕ В ПОЛИМЕРАХ В ПРИСУТСТВИИ ДИСПЕРСНЫХ НАПОЛНИТЕЛЕЙ [c.259]

    При создании полимерных материалов с заданным химическим строением и физической структурой особое значение имеет получение армированных пластиков и наполненных полимеров, в которых процессы полимеризации и одновременно структурообразования протекают в присутствии сильно развитой поверхности волокнистого или дисперсного наполнителя. Влияние малых количеств наполнителей, служащих центрами структурообразования в кристаллических полимерах, на процессы кристаллизации исследовано в работе [245]. [c.175]

    Детальная разработка вопроса о структурообразовании в присутствии наполнителей была дана в работах Ребиндера и его школы [498—503]. В случае наполнения дисперсными наполнителями по мере увеличения содержания наполнителя или уменьшения размера его частиц непрерывно усиливается роль поверхностных явлений на границе раздела фаз, так как все большая часть вещества переходит Н состояние межфазного поверхностного слоя с особыми свойствами. Это — двумерное, или поверхностное состояние, активированное избытком свободной поверхностной энергии [503]. Все основные свойства дисперсных систем, как и взаимодействия соприкасающихся фаз, определяются молекулярно-поверхностными явлениями. Исследования дисперсных систем, содержащих наполнители, в том числе полимерных систем [504], позволили сформулировать ряд представлений о характере взаимодействия частиц наполнителя друг с другом и с дисперсионной средой — молекулами полимера, а следовательно, и о механизме действия активных наполнителей. Изучение процессов структурообразования на модельных системах, в частности на концентрированных суспензиях сажи в неполярной углеводородной среде [c.259]


    Аналогично ведут себя суспензии каолина в толуольном растворе ПС (рис, 2), но интенсивность структурообразования дисперсной фазы возрастает. Присутствие наполнителя проявляется при меньших концентрациях, чем в среде ДБФ, а сформированная структура вызывает относительно большее увеличение эффективной вязкости в области малы градиентов скорости. [c.141]

    С изложенной точки зрения представляют интерес исследования структурообразования при одновременном присутствии нескольких наполнителей, модифицированных введением ПАВ [508], В этом случае каждый компонент твердой фазы обладает различной способностью к взаимодействию с полимером и с адсорбционным модификатором и, следовательно, к образованию в системе коагуляционных структур. В образовании коагуляционной сетки участвуют, таким образом, частицы наполнителей различных природы, формы и дисперсности. Так, для смеси немодифицированных барита и каолина прочность структур, образующихся в суспензии, в зависимости от соотношения компонентов проходит через максимум [508]. Это определяется различиями в упаковке частиц разной формы в смешанной коагуляционной сетке. Но в отличие от суспензий в отсутствие растворителя в полимере прочность структур определяется не плотностью упаковки частиц, а структурой сопряженной системы частица — полимер. Повышение прочности структуры при определенном соотношении разнородных наполнителей объясняется также различной степенью модификации их поверхности ПАВ, необходимой для достижения неполного насыщения поверхности каждого компонента смешанной фазы хемосорбционным слоем модификатора. Представления о зависимости прочности наполненных полимерных систем от степени покрытия частиц наполг нителя ПАВ были подтверждены электронно-микроскопическими наблюдениями [516]. [c.262]


Смотреть страницы где упоминается термин Структурообразование в присутствии дисперсных наполнителе: [c.50]   
Физическая химия наполненных полимеров (1977) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсность наполнителей

Наполнители

Наполнители дисперсные

Структурообразование



© 2025 chem21.info Реклама на сайте