Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность и структура полимеров

    Влияние прочности структур полимер — наполнитель на поведение резин в кислотах [c.44]

    На кислотостойкость резин сильное влияние оказывает прочность структур полимер — наполнитель. Косвенной характеристикой прочности образовавшейся структуры может служить величина усадки в процессе вулканизации. Например, усадка резин из СКФ при вулканизации в котле составляет 30—35% независимо от дозировки и типа таких наполнителей, как углеродная сажа ТГМ-33, фторид и силикат кальция, двуокись титана, сульфат бария. При наполнении сажей У-333 или графитом усадка несколько снижается, но остается еще достаточно высокой (соответственно 22 и 20%). Только при введении аэросила 175 по мере увеличения его дозировки наблюдается резкое снижение усадки — до 10—6% (рис. 11.11). [c.44]


    Для решения проблемы создания полиуретанов с высокой усталостной прочностью традиционный подход, основанный на анализе критических разрывных характеристик, неприемлем. Более эффективным оказалось математическое моделирование систем с учетом особенностей молекулярной структуры полимера [67]. В этом случае полимер можно подвергать относительно низким деформациям, и, следовательно, изучать менее дефектную сетку. [c.546]

    Следует отметить, что одна полимерная цепь может проходить через несколько таких флуктуационных пачек. В результате структура полимера в аморфном состоянии может быть представлена изотропной флуктуационной сеткой, узлами которой являются домены, пачки макромолекул. Такая сетка весьма лабильна. Под влиянием внешних силовых полей, а также при изменении температуры ее физические свойства - прочность, деформируемость - будут изменяться, причем доля вынужденной эластичности при повышении температуры возрастает. [c.136]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]

    Прочность зависит от времени действия нагрузки, температуры и других факторов, а также от структуры полимера, наличия различных дефектов и других особенностей структуры, нанример молекулярной массы, молекулярной ориентации и т. д. Полимеры обладают как общими для твердых тел, так и специфическими [c.280]


    Теоретическая прочность существенно зависит от структуры полимера и, в частности, от степени молекулярной ориентации. Для предельно ориентированного полимера при малых молекулярных массах, когда разрушение идет не за счет разрыва химических связей, а путем относительного сдвига полимерных цепей и преодоления межмолекулярных сил, теоретическая прочность зависит от молекулярной массы. При больших молекулярных мас сах разрушение происходит путем разрыва полимерных цепей. Расчеты прочности последних сделаны пока для полиэтилена и капрона [5]. Для этих полимеров в предельно ориентированном состоянии теоретические прочности в направлении ориентации соответственно равны 3,52-Ю и 3,00-10 МН/м2, а в поперечном направлении — 0,26-10 МН/м (для капрона). [c.282]

    В основе ценных, а порой уникальных свойств полимеров лежат физико-химические особенности их строения. Структура полимеров достаточно стабильна благодаря относительной прочности связей между звеньями внутри цепи. Внутренние участки цепи как бы экранированы, защищены от внешних агрессивных химических воздействий. Вместе с тем отдельные цепи в структурах полимеров способны довольно плавно и обратимо смещаться относительно друг друга, изменять свои размеры за счет перехода от спиралевидной конфигурации к линейной, и наоборот. Благодаря этому при больших механических нагрузках структура полимеров не разрушается, а лишь несколько видоизменяется, сохраняя способность более или менее полно возвращаться к исходной после снятия нагрузки. Эти структурные особенности придают полимерным материалам ценные свойства высокую эластичность, способность к обратимым упругим деформациям — растяжению, изгибу, скручиванию. Другое ценное их качество — пластичность, способность принимать любую форму в процессе изготовления, что позволяет производить большинство изделий из полимеров простым и экономичным способом — отливкой и формовкой. [c.126]

    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    Прочность — важная техническая характеристика полимера. Во многих случаях ее относительно просто измерить с помощью известных, чаще всего стандартных методик, но гораздо труднее понять механизм разрушения или закономерности связи прочности со структурой полимера. [c.194]

    Большое значение прочности как важнейшей характеристики механических свойств полимеров требует выяснения закономерностей влияния структуры полимера и внешних факторов на прочность. [c.206]

    Сшивание макромолекул при облучении облегчается тем, что возникший при отрыве водорода свободный радикал может передавать неспаренный электрон вдоль цепи, отчего увеличивается вероятность его нахождения по соседству с таким же свободным радикалом другой макромолекулы. На определенной стадии облучения молекулы полимера оказываются химически связанными (сшитыми) в общую сетчатую структуру. Полимер теряет способность растворяться в обычных для него растворителях, резко возрастают его механические свойства (модуль, твердость, прочность и др.). [c.248]

    Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более. высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,5—2,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. [c.361]


    Внимание исследователей привлекает изучение структуры расплавленных полимеров. Необходимость исследования их очевидна, поскольку первичное упорядочение, возникающее в расплаве, предопределяет структуру полимеров в твердом состоянии и тем самым оказывает влияние на прочность, термостойкость и другие свойства получаемых из расплава пленок и волокон. Известно большое количество косвенных экспериментальных данных, на основании которых можно утверждать, что в расположении участков цепных молекул в расплавах и растворах полимеров существует определенный порядок. Непосредственные данные об их структуре можно получить на основе дифракционных экспериментов. Работы в этом направлении впервые были выполнены [c.222]

    Природа упругости жидкостей может быть различной. Так, для концентрированных связнодисперсных систем с большой поверхностью контактов между частицами упругость объясняется наличием твердообразных свойств, прочностью структуры. Упругие свойства растворов полимеров обусловлены в первую очередь эластичностью макромолекулярных клубков. [c.49]

    МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ И СТРУКТУРА ПОЛИМЕРОВ [c.230]

    Длительная электрическая прочность в значительной мере определяется интенсивностью так называемого электрического старения, которое происходит под влиянием разрядов, и связанного с ними повышения температуры, а также озона и заключается в необратимом изменении структуры полимера (химической деструкции). Старение приводит к росту электрической проводимости (за счет увеличения числа носителей тока), и пробой наступает при меньших значениях напряженности электрического поля Такой пробои называется электрохимическим. [c.380]

    Чем толще пленка, тем она прочнее. Однако с увеличением толщины полимерного покрытия может наблюдаться неполное участие редокс-центров в переносе заряда. В общем случае на перенос электронов влияет структура полимера, расположение электроактивных фрагментов в полимерной цепи, их окружение, подвижность противоионов, pH раствора. Свойства пленки зависят также от природы растворителя и фонового электролита. Наилучшие свойства имеют пленки, нерастворимые в воде, но набухающие в ней. Однако сильно набухающие полимеры могут частично растворяться в воде. Чтобы этого не произошло, применяют перекрестное связывание молекул с помощью бифункциональных реагентов, например глутарового альдегида. При этом молекулы модификатора связываются и с полимером, и с поверхностью электрода, и друг с другом. Такой способ применяют в тех случаях, когда требуется долговечность ХМЭ и его прочность. [c.484]

    Термостойкость, естественно, связана с прочностью химических связей. Еще в 30-х гг. текущего столетия К. А. Андрианов показал, что связь —О более прочная, чем С—С (соответственно 444 и 347 кДж/моль), Получение кремнийорганических полимеров началось с 1943 г. Некоторые из новых кремнийорганических материалов сохраняют работоспособность при 400° и даже 500 °С. Это было достигнуто путем усложнения структуры полимера. При повышении температуры атомы колеблются все интенсивнее. Даже если они вырываются из своей ячейки, влияние соседей не позволяет им уйти далеко, и прежняя структура может восстановиться. [c.34]

    Наиболее аргументированным следует признать подход, основанный на предположении о возникновении в полимере при введении небольших количеств пластификатора упорядоченности, что и вызывает повышение жесткости полимера. Дальнейшее увеличение количества пластификатора не приводит к упорядочению структуры полимера жесткость полимера уменьшается, прочность снижается. [c.172]

    Химическая стойкость, значение обменной емкости, селективность, механическая прочность и другие свойства иопитов зависят от природы и концентрации ионогенных групп, структуры макромолекул, прочности связи между полимером и ионогенной группой. Поскольку макромолекулы ионитов имеют пространственное строение, растворитель вызывает только набухание ионита, степень которого определяется структурой полимера, природой и концентрацией ионогенных групп и составом раствора электролита. Как правило, иониты поликонденсационного тина имеют худшие показатели химической стойкости, чем иониты полимеризационного типа. [c.96]

    В зависимости от того, является ли изменение свойств полимера под воздействием влаги обратимым пли необратимым после удаления влаги из материала, зюздействие воды на полимер определяют как физическое или химическое. Необратимые изменения свойств материала при химическом воздействии соировоя даются изменением химической структуры полимера. Физическое воздействие вызывает обратимые изменения свойств полимера при этом физическое воздействие может быть как поверхностным, так и объемным. Следствием проникновения воды в полимер в процессе объемной диффузии при обратимом воздействин является уменьшение взаимодействия мегкду макромолекулами, связанными друг с другом силами Ван-дер-Ваальса, что, в свою очередь, снижает прочность материала, увеличивает гибкость макромолекулярных цепей, в результате чего снижается температура стеклования и температура хрупкости, создаются условия для ускоренного протекания релаксационных процессов. [c.73]

    Между средними значениями предела прочности структур, обработанных двойными полимерами и "Рага<1упе-70", тройным полимером этилена С и присадкой ЕСА-4242, существенной разницы нет. [c.138]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Структура полимеров в некристаллическом состоянии, в частности эластомеров, менее изучена, так как прямые структурные методы в этом случае не столь эффективны, а косвенные методы, по-зволяюшие судить о структуре полимеров, только развиваются. Относящиеся к последним методы релаксационной спектрометрии позволяют по характеру теплового движения отдельных структурных единиц- получать представления об их размерах и прочности связи в полимере. [c.34]

    Особенностью коагуляционных структур являются их своеобразные высокоэластические свойства, напоминающие свойства полимеров. Медленно развивающиеся и спадающие после разгрузки обратимые по величине деформации сдвига характерны не для самих частичек дисперсной фазы, а для образованной ими пространственной сетки с тонкими прослойками воды по участкам контактов. Прочность коагуляционных структур, образующихся в различных,суспензиях, определяется числом контактов сцепления или числом свободных частичек, которые возникают при самопроизвольном диспергировании дисперсных фаз, так как природа контактов, возникающих ио схемам угол — угол, угол — ребро или ребро — ребро, может не зависеть от состава катионообменного комплекса, т. е. от гидратирован-ности плоскостей спайности (для чглинистых минералов, например). Кроме того, прочность структуры падает (при неизменном числе или площади контактов) с увеличением толщины прослоек дисперсионной среды, т. е. толщины диффузной обкладки двойного слоя ионов. [c.237]

    Повреждения полимеров, применяемых в конструкциях машин чи сооружений, являются распространенным явлением. Наибольший, . бъем занимают повреждения микрогрибами. При воздействии, грибов полимеры изменяют цвет, структуру, в тонких пленках — герметичность, прочность. Повреждения полимеров происходят в результате разрастания колоний грибов, проникновения грибницы через мнкронесплошности, а также вследствие воздействия продуктов метаболизма. В абл. 10 риведены иолймеры грибы, преимущественно развивающиеся ка их поверхностях. [c.38]

    А. Д. Абкин, А. П. Шейнкер. РАДИАЦИОННАЯ СТОЙКОСТЬ полимеров, их способ ность противостоять действию ионизирующих излучений. Зависит от структуры полимера, пов-сти и толщины образца, а также от эксплуатац. факторов (т-ра, среда, мощность дозы облучения и др.). Количеств, критерий — пороговая (предельная) доза, при к-рой материал становится непригодным в конкретных условиях применения (напр., конструкц. материал утрачивает мех. прочность), или соотношение значений к.-л. св-ва материала до и после его облучения определ. дозой. Примеры радиационно стойких материалов полистирол (пороговая доза 10 рад), феиоло-формальдегидный, эпоксидный, полиэфирный стеклопластики ( 10 рад). Р. с. повышают введением в полимер антирадов или (при эксплуатации изделий на воздухе) их комбинаций с антиоксидантами. [c.488]

    В межфазной области могут концентрироваться низкомол. фракции, ингредиенты, вводимые в С. п. при получении композиц. материалов, может изменяться надмол. структура полимеров, что в совокупности приводит к образованию межфазного слоя (МФС), к-рьш включает также слой сегментальной р-римости и может достэтать размеров в неск. мкм. Иногда в С. п. вводят спец. добавки, концентрирующиеся в МФС и регулирующие фазовую структуру. Это, напр., привитые и блоксополимеры, а также пск-рые ПАВ (особенно неионогенные), улучшающие диспергирование полимера в полимере при мех. перемешивании, увеличивающие стабильность фазовой структуры и прочность связи между фазами, что, в свою очередь, улучшает мех. св-ва смеси. [c.371]

    Кратковременная прочность определяется преимущественно механическим фактором, поскольку за время действия силы необратимые изменения структуры полимера вследствие протекания мсханохимическил реакций минимальны. На длительную Прочность существенное влияние оказывает и химический фактор. [c.344]

    Диэлектрические потери зависят от структуры полимера, а эффективность теплоотвода определяется теплопроводностью полимера к толщиной образца Чем больше диэлектрические потери, хуже теплопроводность и больше толщина образца, тем при более низких значениях напряженности электрического поля иронзойдет пробой, т е тем ннже электрическая прочность. П0В11Ш енне температуры наибольшее внутри образца и зависит [c.379]

    Такие структуры полимеров напоминают кристаллические образования и обладают высокой механической прочностью. В структуре взаимосвязанных полимерных цепей имеются полости, включающие гидрофЬбные (не [c.42]


Смотреть страницы где упоминается термин Прочность и структура полимеров: [c.138]    [c.155]    [c.188]    [c.24]    [c.208]    [c.281]    [c.380]    [c.233]    [c.234]    [c.70]    [c.136]    [c.566]    [c.343]    [c.348]    [c.348]    [c.250]    [c.251]    [c.13]   
Смотреть главы в:

Прочность и разрушение высокоэластических материалов -> Прочность и структура полимеров


Физико-химия полимеров 1978 (1978) -- [ c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Структура прочность



© 2025 chem21.info Реклама на сайте