Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оказаки

Рис. 28.2. Фрагменты Оказаки (по В. Эллиоту) Рис. 28.2. <a href="/info/33167">Фрагменты Оказаки</a> (по В. Эллиоту)

    Как видно, синтез ведущей цепи ДНК идет всегда в направлении 5 —>3, соответствующем направлению движения репликационной вилки. Сохраняя правило синтеза дочерних молекул ДНК 5 —>3, синтез на второй цепи родительской ДНК идет в направлении, противоположном движению репликационной вилки. В зависимости от типа клетки фрагменты Оказаки [c.482]

    В действительности процесс репликации ДНК более сложен, чем описанный выше. Считается, что примерно двадцать белков участвуют в процессе репликации, в том числе и такие, которые разделяют родительские цепи, присоединяют и удаляют небольшие фрагменты затравок, вырезают неправильно присоединившиеся основания и исправляют поврежденные участки. Кроме того, оказывается, что синтез новой цепи на матрице происходит не как одна непрерывная стадия, но путем синтеза небольших цепей (фрагментов Оказаки), которые затем соединяются друг с другом с помощью фермента ДНК-лигазы. Затравкой этих фрагментов могут служить короткие цепи РНК, позднее заме- [c.150]

    Для того, чтобы закрыть разрывы между вновь построенными блоками ДНК, ДНК-полимераза I выполняет две задачи. Во-первых, она продлевает синтез незавершенных фрагментов Оказаки на соседние РНК-сегменты и, во-вторых, она удаляет эти РНК- [c.199]

    III удлиняет эти затравки до тех пор, пока не упрется в предыдущую затравку, т. е. синтезирует фрагменты Оказаки. Затем действует ДНК-полимераза I, которая продолжает удлинять фрагменты Оказаки, одновременно гидролизуя РНК-затравку предыдущего Фрагмента, используя свою 5 -экзонуклеазную активность. После действия ДНК-полимеразы I между двумя соседними фрагментами остается только одноцепочечный разрыв, который зашивает ДНК-лигаза. Таким образом, в репликативной вилке одновременно работают около 20 разных полипептидов, осуществляя сложный, высо-Коупорядоченный и энергоемкий процесс. Не говоря уже о том, что Каждый нуклеотид переходит в ДНК из богатого энергией предшественника, множество. молекул АТР тратится на действие хеликаз, на синтез РНК-затравок, которые затем удаляются, на активацию ДНК-полимеразы III при переходе на каждый новый фрагмент Оказаки запаздывающей цепи и на работу топоизомераз по Раскручиванию взаимозакрученных цепей ДНК (см. ниже). Такова цена высокой точности и скорости репликации. [c.57]

    В 1968 г. Оказаки сообщил, что в процессе репликации в бактериальных клетках появляются короткие фрагменты ДНК, получившие название репликационных фрагментов (или фрагментов Оказаки) [27]. В дальнейшем было сделано еще одно важное открытие—был обнаружен новый фермент ДНК-лигаза [28, 29], способный объединять два фрагмента ДНК в непрерывную цепь. Специфическое действие этого фер.мента заключается в репарации ( залечивании ) одноцепочечных разрывов ДНК- Разорванная цепь молекулы ДНК содержит, как это видно из уравнения (15-4), свободные З -гидроксильную и 5 -фосфатную группы, которые должны быть соединены. ДНК-лигаза Е.соИ активи- [c.198]


    Недавно было обнаружено, что короткая цепь РНК, образующая гибрид РНК—ДНК, может служить затравкой для ДНК-полимеразы in vitro. Эти данные в сочетании с обнаружением фрагментов Оказаки и лигазы дают основание думать, что в репликационной вилке происходят следующие события двухцепочечная ДНК раскрывается в ограниченном участке, вероятно, при участии расплетающих белков (разд. Д). В специальной затравочной области синтезируется короткий фрагмент РНК-зат1равки, образующей пары оснований с ДНК. Далее [c.198]

    Направление движения Оказаки [c.485]

    Поскольку ДНК-полимеразы катализируют репликацию в направлении 5 —> 3, а цепи родительской ДНК антипараллельны, только одна из новых цепей синтезируется непрерывно - эта цепь называется лидирующей. Вторая цепь, называемая отстающей, синтезируется в виде фрагментов, которые затем сшиваются специальным ферментом ДНК-лигазой. Сшиваемые части называют фрагментами Оказаки, по имени исследователя, впервые обнаружившим такой вид синтеза цепи ДНК. Длина фрагментов Оказаки может быть от 100 до 1000 нуклеотидов. [c.55]

Рис. 8.29. Возможные схемы редупликации ДНК по Оказаки. Рис. 8.29. <a href="/info/1546906">Возможные схемы</a> редупликации ДНК по Оказаки.
    Препятствует обратной рекомбинации расплетенных цепей в двойную спираль Соединяют фрагменты Оказаки на отстающей цепи [c.451]

    Получены доказательства, что образование каждого фрагмента Оказаки требует наличия короткого затравочного комплементарного праймера — участка РНК, синтез которого катализируется праймазой. Затем при участии ДНК-полимеразы П1 синтезируются длинные участки ДНК. РНК-затравки далее вырезаются при участии ДНК-полимеразы I, а свободные места их (бреши) замещаются (достраиваются) комгшементарными дезоксирибонуклеотидами под действием той же ДНК-полимеразы I наконец, сшивание разъединенных участков отстающей цепи осуществляется при помощи ДНК-лигаз. Подобный механизм челночного синтеза ДНК легко объясняет фактические данные о накоплении коротких фрагментов ДНК у Е. oll во время репликации ДНК. [c.483]

    Рве. 7.26. Схема репликации ДИК по Оказаки [c.253]

    После образования праймера в направлении 5 3 образуется фрагмент ДНК. На отстающей цепи таких фрагментов синтезируется большое количество, и они называются фрагментами Оказаки. Их величина у прокариот составляет около 1000 нуклеотидов, у эукариот — в три раза меньше. [c.452]

    Направление синтеза ДНК совпадает с направлением расплетания исходной двойной спирали лишь для одной нэ новосиитеэнроваиных цепей (ведущая цепь). Вторая цепь <ннтезируется прерывисто, сравнительно короткими фрагментами. Инициация каждого такого фрагмента Оказаки происходит лишь после того, как образуются достаточно лротяженный однонитевой участок матрицы [c.53]

    Удаление РНК-затра-вок, застройка брешей Сшивание фрагментов Оказаки Связывание однонитевой ДНК Гистоноподобный белок [c.56]

    Ока , флокулянт 5/204 Окапаевая кнслота 5/1048 Оказаки фрагменты 4/497 Окалина 1/907, 908 2/436, 953, 1180  [c.667]

    Сложность процесса репликации ДНК объясняется тем, что обе цеш1 реплицируются одновременно, хотя имеют разное направление (5—>3 и 3 —>5 ) кроме того, рост дочерних цепей также должен происходить в противоположных направлениях. Элонгация каждой дочерней цепи может осуществляться только в направлении 5 —>3. Р. Оказаки высказал предположение, подтвержденное экспериментальными данными, что синтез одной из дочерних цепей осуществляется непрерывно в одном направлении, в то время как синтез другой дочерней цепи происходит прерывисто, путем соединенгы коротких фрагментов (в честь автора названы фрагментами Оказаки), в свою очередь синтезирующихся в противоположном направлении (рис. 13.4). [c.482]

    Циклодекстрины известны как реактивы с широкими возможностями лигандов в водных растворах. Важным свойством циклодекстринов является их способность связывать различные молекулы -"гости в своей гидрофобной полости, не образуя ковалентных связей. Принято [65], что взаимодействие между ЦД и лигандами происходит благодаря гидрофобным взаимодействиям, ван-дер-ваальсовым силам, Н-связям, дисперсионным силам и стерическим эффектам. Нельзя говорить об однозначном преобладании каких-либо сил в процессе комплексообразования ЦД с различными молекулами в водной среде. Кроме того, значительную роль в процессе комплексообразования играет геометрический фактор, т.е. соответствие размера полости ЦД размерам АК. Оказаки и МакДовеллом [66] при исследовании комплексов Р-ЦД с нитрилами высказана интересная идея о том, что чем меньше отклонение полости ЦД от симметрии, тем выше подвижность молекул - "гостей" и тем слабее взаимодействие "хозяин-гость". Таким образом, среди факторов, определяющих комплексообразующую способность ЦД к АК, можно назвать такие, как влияние среды и сольватационных свойств "хозяина", "гостя" и комплекса соответствие геометрических размеров "хозяина" и "гостя" асимметрию полости, которая ограничивает набор конформаций и обеспечивает эффективное связывание. При исследовании комплексообразования ЦД с ароматическими АК сделан вывод, что "гости" глубже проникают в полость Р-ЦД, чем а-ЦД [67]. Размер полости а-ЦД слишком мал для глубокого включения фенильного кольца. Также известно, что а-амино и а-карбоксилатные группы АК не могут включаться в полость ЦД, но они могут взаимодействовать с гидроксильными группами на поверхности полости ЦД. [c.223]


    Оказаки. Таким образом, синтез ДНК на двух матричных цепях исходной молекулы заметно различается. Новосинтезированная цепь которая синтезируется непрерывно, называется ведущей (англ. lea- ding), другая цепь называется запаздывающей (англ. lagging). Каждый фрагмент Оказаки имеет на 5 -конце несколько рибонуклеотидов— результат действия праймазы. Характерный размер фрагментов Оказаки различается для бактерий и эукариот у бактерий, они имеют длину около 1000 нуклеотидов, у эукариот они короче, порядка 100 нуклеотидов. Через некоторое время после синтеза РНК-затравки удаляются, бреши застраиваются ДНК-полимеразой,. а фрагменты сшиваются в одну ковалентно-непрерывную цепь ДНК предназначенным специально для этого ферментом, ДИК-лигазой. [c.54]

    Две молекулы ДНК-полимеразы одновременно и синхронно синтезируют и ведущую, и запаздывающую цепи ДНК. Когда полимераза, синтезирующая запаздывающую цепь, доходит до начала предыдущего фрагмента Оказаки, она перескакивает на З -конец затравки, которую синтезирует в этот момент праймосома по всей вероятности это событие требует гидролиза АТР. Огромный белковый комплекс, осуществляющий одновременный синтез ДНК на обеих матричных цепях репликативной вилки, предложено называть реплисомон , ориентировочная масса комплекса 1400.) [c.58]

    Имеются доказательства того, что происходит симметричный, но сложный процесс непрерывной репликации на обеих цепях. Раскручиванию двунитевой ДНК способствует связывание с многочисленными белковыми частицами, которые прикрепляются к родительской ДНК в выбранном месте инициации н им удается оставить разделенными комплиментарные цепи ДНК, готовые для нового синтеза. Далее определенная РНК-полимераза синтезирует короткую РНК, длиной 01 20 до 25 нуклеотидов, которая комплиментарна родительской ДНК и связывается с ее цепью. Эта РНК действует как затравка для действия большого объемистого фермента ДНК-полимераза 1П, который теперь создает новую цепь ДНК длиной примерно в 1000 остатков, являющуюся продолжением этой РНК. Такой синтез идет в направлении 5 3 путем конденсации дезоксинуклеозид-5 -трифосфатов с З -концевой гидроксильной группой на обеих цепях родительской ДНК показано стрелками на схеме (3) . Поскольку фермент работает в условиях, близких к обратимости, это обеспечивает максимальный термодинамический контроль за правильностью выбора встраиваемых дезоксирибонуклеозидов путем спаривания их оснований с соответствующими основаниями в существующей цепи. Таким путем на каждой родительской пепи располагается ряд блоков, называемых фрагментами Оказаки. [c.199]

    В итоге фрагменты Оказаки превращаются в цепи, построенные только из дезоксирибонуклеотидов. Однако на стыке двух фрагментов остаются 5 -концевой фосфомоноэфирный фрагмент первого и 3 -гидроксигруппа второго фрагмента. Их соединение в единую цепь происходит при помощи еще одного фермента, являющегося обязательным участником репликации, — ДНК-лшазы. Этот фермент катализирует соединение двух фрагментов по реакции, аналогичной описанной в 4.6 для РНК-лигазы, используя для образования промежуточного смешанного ангидрида с АМФ, который переносится либо от АТФ, либо ог ЫАВ+. В последнем случае на первой стадии реакции освобождается не пирофосфат, а никотинамидмононуклеотвд. Процесс проходит только в составе двунитевой структуры. Схема процесса может бьггь представлена в виде [c.181]

    Новая ДНК синтезируется in vitro всегда в направлении 5 — -З. Вместе с тем имеются данные, указывающие, что in vivo редуплицируются обе цепи — одна в направлении 5 — 3, другая в направлении 3 — 5. Оказаки и сотрудники [190] предложили выход из этого противоречия, допустив существование [c.547]

    Вернер исследовал репликацию, пользуясь меченым тимином, а не тимидином, и показал, что тимин используется бактериями для репликации, а тимидин — для репарационного синтеза [192] Вернер предлагает измененную модель ДНК непрерывно реплицируется в развилке двойной спирали посредством одновременного удлинения обеих ноьых цепей. Преимущественное использование тимина показывает, что процесс репликации отличен от репарационного синтеза. Короткие цепи, найденные Оказаки/ возникают под действием специфических нуклеаз. Однако схема Вернера не подтвердилась. [c.547]

    Для редупликации существенна как термодинамика, так и кинетика матричного синтеза. Появление ошибочного нуклеотида в цепи в результате добавления, замены или делеции определяются и темпом процесса, т. е. в конечном счете поведением ДНК-полимеразы, катализирующей редупликационный синтез ДНК. Если синтез идет прерывно, согласно Оказаки (см стр. 547), то существенны кинетические условия и при репли кации отрезков ДНК, и при их объединении в общую цепь. [c.601]

    Однако в работе Асахина и Оказаки [146], опубликованной позднее, приводятся доказательства, свидетельствующие о замыкании кольца в а-положение. [c.50]

    От З -конца праймера начинается синтез новой цепи ДНК при помощи ДНК-полимеразы III. Синтез идет в направлении 5 3 одновременно на обеих цепях матрицы. Учитывая тот факт, что цепи ее антипараллельны, новосин-юзированные цепи также должны были бы расти в противоположных направлениях при помощи двух различных ферментов. На самом же деле, как показано выше, обнаружена одна ДНК-полимераза, катализирующая рост цепи в направлении 5 3. А. Корнберг в связи с этим выдвинул предположение о том, что на одной из цепей синтез должен быть прерывистым. Это в дальнейшем блестяще подтвердил в эксперименте японский исследователь Р. Оказаки. Было установлено, что на одной цепи направление синтеза совпадает с направлением движения репликативной вилки (рис. 28.1). Эта цепь называется лидирующей. Цепь, направление синтеза которой противоположно движению репликативной вилки, называют отстающей, и синтез этой цепи имеет прерывистый характер. [c.452]


Смотреть страницы где упоминается термин Оказаки: [c.54]    [c.54]    [c.58]    [c.58]    [c.253]    [c.54]    [c.58]    [c.484]    [c.253]    [c.180]    [c.193]    [c.606]   
Генетика с основами селекции (1989) -- [ c.128 ]




ПОИСК







© 2025 chem21.info Реклама на сайте