Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионные аппараты число единиц переноса

    Движущая сила массопередачи имеет максимальное значение при работе аппарата в режиме идеального вытеснения число единиц переноса и высота аппарата в этом случае минимальны. В реальных аппаратах движение фаз может в значительной степени отличаться от модели идеального вытеснения. Степень отклонения реальной структуры потоков от модели идеального вытеснения (степень продольного перемешивания) для колонных аппаратов чаще всего оценивается на основе диффузионной модели коэффициентами продольного перемешивания. [c.53]


    Метод теоретических тарелок позволяет, таким образом, для противоточных аппаратов обойти расчет самого диффузионного процесса он заменяется расчетом равновесия, дополненным эмпирическими коэффициентами. Если известны коэффициенты переноса, то длину, эквивалентную одной теоретической тарелке, или коэффициент полезного действия можно рассчитать. Для тарельчатых колонн естественным представляется нестационарный метод расчета коэффициента полезного действия, подробно разработанный Кишиневским [8]. В этом методе рассматривается нестационарный процесс диффузии для жидкой частицы за время ее пребывания на тарелке, без пользования понятием приведенной пленки. Для насадочных колонн успешно применяется стационарный метод расчета в приближении двойной пленки при этом число теоретических тарелок выражается через число единиц переноса (ЧЕП), которое, согласно формуле (III, 38а), связано с критерием Стэнтона. Изложение этого вопроса можно найти в монографии Рамма [9], к которой и отсылаем интересующегося читателя. Анализ, учитывающий процессы не только диффузии, но и теплопередачи, дал Жаворонков [101. [c.167]

    Расчет числа реальных ступеней с учетом эффективности каждой ступени по Мэрфри, как и расчет теоретических ступеней, основывается на последовательном определении составов фаз, уходящих со всех ступеней. Удобнее начинать расчет с того конца аппарата, где входит фаза, по которой выражена эффективность ступени. Возможная схема расчета показана на рис. 3.5. Основное отличие алгоритма расчета числа реальных ступеней от приведенного на рис. 3.2 алгоритма расчета числа теоретических ступеней заключается в том, что для каждой ступени требуется определение ее эффективности. Для этого необходимо иметь данные, позволяющие находить общие числа единиц переноса, а в случае применения сложных моделей структуры потоков (диффузионной, ячеечной и др.) — также данные для определения параметров этих моделей. Исходными данными для расчета чисел единиц переноса обычно служат уравнения, чаще всего эмпирические, из которых можно определить коэффициенты массоотдачи и межфазную поверхность. Знание этих параметров позволяет найти частные (фазовые) числа единиц переноса, определяемые выражениями [c.106]

    В работе [21] на основе диффузионной модели структуры потока предложен метод определения параметров продольного перемешивания по скачку концентраций на входе сплошной фазы Метод основан на преобладающем продольном перемешивании в аппарате, поскольку в питающей трубке оно пренебрежимо мало. Это означает, что в сечении входа значение. коэффициента продольного перемешивания резко изменяется, приводя к скачку концентраций во входящей фазе. Скачок, оцениваемый числом единиц переноса 7 , зависит от фактора массообмена F = mVyjVx и числа Пекле сплошной фазы Рес и в меньшей степени — от числа Пекле дисперсной фазы Pe . Предложена [21] номограмма, позволяющая одновременно определять значение Рес и Ред по значениям F и Т. [c.202]



Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузионный перенос

Единицы переноса

Числа переноса

Число единиц переноса



© 2025 chem21.info Реклама на сайте