Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число теоретических ступеней разделения,

    Пример 1. Составить программу расчета минимального числа теоретических ступеней разделения по уравнению Фенске — Андервуда, [c.435]

    Если на кривой равновесия для какой-либо смеси имеется точка перегиба, например для смеси этанол—вода, то число теоретических ступеней разделения определяют методами, описанными в разд. 4.7.1 и 4.7.2. Однако при этом вводятся следующие ограничения, а именно концентрация легколетучего компонента в головном продукте % должна быть меньше концентрации в азеотропной точке, а при определении минимального флегмового числа рабочую линию процесса ректификации для укрепляющей части колонны следует[проводить по касательной к кривой равновесия (рис. 65). Если провести рабочую линию а—с , как обычно, от точки а через точку Ь , то на кривой равновесия получатся три точки пересечения Ь , и Ь . Даже при некотором увеличении флегмового числа, начиная с его минимального значения, этой рабочей линии соответствует бесконечно большое число теоретических ступеней разделения. Чтобы получить конечное число теоретических ступеней, необходимо перейти от минимального флегмового числа, соответствующего касательной к кривой равновесия (рабочая линия а—с), к несколько большему флегмовому числу, определяемому рабочей линией а—с после этого можно строить [c.107]


    В промышленной практике температурный градиент иногда используется для создания рефлюкса в том случае, когда температура рафината выше, чем температура экстракта во фракционирующей системе. Однако, если температура экстракта не. поддерживается ниже температуры полного смешения растворителя с более растворимым компонентом, экстракт будет содержать более растворимый компонент с некоторым количеством менее растворимого компонента, независимо от числа теоретических ступеней разделения. В тех случаях, когда происходит полное смешение, как в случае с низкокипящими ароматическими и многими селективными растворителями, вторая фаза, которая необходима для перемещения менее растворимых компонентов в рафи-натную часть фракционирующей системы, может быть создана применением второго растворителя. Для этой цели может быть использована парафино-циклопарафиновая фракция, кипящая в других температурных интервалах, чем исходное смазочное масло. [c.280]

    Предположим, что нагревается смесь состава х . При температуре 1 она начинает кипеть, при этом паровая фаза имеет состав у. Жидкая фаза Хд находится в равновесии с паровой фазой у при температуре /. Изобарные кривые кипения и конденсации определяют экспериментально так же, как и кривую равновесия (см. разд. 4.6.З.). Диаграмму t—х—у как и диаграмму равновесия у—х можно использовать для определения требуемого числа теоретических ступеней разделения. На рис. 59 (см. разд. 4.7) изображена кривая равновесия для смеси бензол— толуол, построенная на основе изобарных кривых кипения и конденсации. Точки Л и В лежат в этом случае одна под другой. Диаграмма 1—х—у имеет то преимущество, что в процессе перегонки можно по температуре в головке колонны определять концентрацию головного продукта. При работе с тарельчатыми колоннами эта диаграмма позволяет проводить текущий контроль состава смеси на тарелках по перепаду температуры в колонне. По температурам на тарелках можно установить оптимальную тарелку питания и тарелку для отбора промежуточного продукта. [c.75]

    Число теоретических ступеней разделения, достигаемое в колонне, является функцией большого числа параметров как аппаратурного, так и технологического характера. Путем одних только математических построений до сих пор еще не удалось разработать метод расчета ВЭТС. На основе многочисленных экспериментальных результатов получены только эмпирические соотношения (см. разд. 4.2 и 4.8). [c.97]

    N — число теоретических ступеней разделения п — число единиц переноса  [c.125]

    Если сумма невязок оказывается меньше, чем величина допустимой погрешности в выполнении общих материальных балансов колонны е, которая должна быть задана перед началом расчетов, то процесс счета прекращается и полагается, что необходимое число теоретических ступеней разделения п будет [c.75]


    Приведенный метод расчета числа тарелок, основанный на предположении о постоянстве количеств пара и жидкости по высоте колонны, оправдан только при расчетах разделения смесей близкокипящих компонентов. Для смесей, температуры кипения компонентов которых значительно отличаются, изложенный метод может привести к большим погрешностям в определении необходимого числа тарелок. Для проверки полученного числа теоретических ступеней разделения необходимо произвести проверочный расчет колонны с учетом теплового взаимодействия потоков жидкости и пара по высоте колонны. [c.76]

    Суммарная производительность по легкой и тяжелой жидкости промышленных экстракторов составляет до 9 м ч, при этом число теоретических ступеней разделения достигает порядка 7—8. [c.470]

    Минимальное число теоретических ступеней разделения при ректификации бинарной системы согласно уравнению Фенске — [c.435]

    Пример 3. Составить программу расчета зависимости числа теоретических ступеней разделения укрепляющей части ректификационной колонны (при разделении бинарной смеси) от флег-мового числа. [c.438]

    Число теоретических ступеней разделения и условия ректификации Способ перегонки и режим процесса [c.41]

    Влияние неудовлетворительного распределения жидкости тем значительнее, чем большим числом теоретических ступеней разделения обладает колонна. При коэффициенте неравномерности орошения 10% число теоретических ступеней разделения, получаемых в колонне, эквивалентной, например, 100 ступеням, [c.43]

    О пользе концепции теоретической ступени можно получить определенное представление, если сравнить процессы разделения в тарельчатой и насадочной колоннах по возможности одинаковых размеров, работающих в идентичных условиях. Если колонны имеют одинаковую разделяющую способность,то можно уверенно сказать, что обе колонны эквивалентны определенному числу теоретических ступеней разделения. [c.100]

    Например, для dJd = 10 получаем = 0,27, а для dJd = = 30 имеем т, = 0,025. В первом случае степень перемешивания гпд настолько велика, что даже значительное повышение коэффициента неравномерности орошения мало снижает коэффициент использования насадочной колонны. Во втором случае такая зависимость не имеет места. Этот пример иллюстрирует эмпирическое правило, которое требует, чтобы отношение dJd , находилось в интервале от 10 до 30. Поэтому представительное значение числа теоретических ступеней разделения для колонны можно получить лишь при отношении dJd = 10 и при 1 0, [c.45]

    ЧИСЛО ТЕОРЕТИЧЕСКИХ СТУПЕНЕЙ РАЗДЕЛЕНИЯ (ЧИСЛО ТЕОРЕТИЧЕСКИХ ТАРЕЛОК) [c.93]

    Число теоретических ступеней разделения, требуемое для разделения смеси бензол—толуол при хв= 40%, ХЕ — 98% (мол.), [c.101]

    Х = 98% (мол.), число теоретических ступеней разделения п = 10. [c.102]

    Для того, чтобы установить, до каких пределов нужно повысить флегмовое число (при изменившемся составе кубовой жидкости) для получения дистиллята прежнего состава расчетное число теоретических ступеней разделения для начала и конца разгонки было намеренно выбрано одинаковым. Если оставить флегмовое число о = 1,85, то концентрация дистиллята % с уменьшением концентрации жидкости в перегонной колбе снизилась бы. [c.102]

    Таким образом, при периодической ректификации недостаточно установить условия процесса для начального момента. Следует также решить, до какой концентрации кубовой жидкости целесообразно проводить разгонку или какое максимальное флегмовое число необходимо выбрать, чтобы длительность разгонки не была бы слишком большой. Если принять предельное флегмовое число у = 25 и Хд = 80% (мол.), оставив постоянными = 98% (мол.) и число теоретических ступеней разделения п = 10, то для снижения концентрации легколетучего компонента в кубовой жидкости с 80 до 5% (мол.) необходимы флегмовые числа, указанные в табл. 13. [c.102]

    Расчетная кривая равновесия смеси жирных кислот С,—С, нормального строения при 20 мм рт. ст. и пример графического способа расчета числа теоретических ступеней разделения для непрерывной ректификации. [c.105]

    ОПРЕДЕЛЕНИЕ ЧИСЛА ТЕОРЕТИЧЕСКИХ СТУПЕНЕЙ РАЗДЕЛЕНИЯ ДЛЯ СМЕСЕЙ СО СЛАБО ВЫПУКЛЫМИ КРИВЫМИ РАВНОВЕСИЯ И ПРИ НЕБОЛЬШОМ РАССТОЯНИИ МЕЖДУ КРИВОЙ РАВНОВЕСИЯ И РАБОЧЕЙ ЛИНИЕЙ [c.108]

    Зависимость числа теоретических ступеней разделения от концентрации для смеси бензол —н-гептан (по данным Штаге—Шульце). [c.110]

    Зависимость числа теоретических ступеней разделения от показателя преломления для эталонной смеси к-гептан—метилциклогексан. [c.110]

    Вместо значения абсциссы Xg можно также использовать и другие показатели, например плотность или показатель преломления, и аналогичным способом определять число теоретических ступеней разделения при этом на график наносят соответствующие значения показателей для загрузки куба и дистиллята и находят разность соответствующих чисел на оси ординат. Рис. 71 иллюстрирует зависимость числа теоретических ступеней от коэффициента преломления для модельной смеси н-гептан — метилциклогексан [147]. [c.110]

    Простейшим случаем использования ЦВМ в проектных расчетах является определение числа теоретических ступеней разделения, необходимых для получения конечных продуктов заданного качества при принятых значениях флегмовых отношений в секциях ко гонны. Рассмотрим последовательность расчета необходимого числа теоретических тарелок для колонны непрерывного действия, в которой происходит разделение многокомпонентной смеси, в предположе1ши о постоянстве мольных количеств жидкости и пара по высоте колонны. [c.72]


    Сделаем упрощающее допущение, что мольные энтальпии компонентов, а следовательно и смеси, одинаковы. Тогда с помощью графического метода Мак-Кэба и Тиле [77] можно рассчитать число теоретических ступеней разделения, необходимое для разделения смеси при определенном флегмовом числе, которое превышает минимальное флегмовое число. Вычисления можно проводить как для периодического, так и для непрерывного режима работы. [c.99]

    Неравномерность в распределении жидкости по колонне всегда вызывает снижение числа теоретических ступеней разделения вследствие того, что соотношение расходов пара и жидкости в различных точках насадки отклоняется от нормы. Глубокий теоретический анализ влияния неравномерности распределения жидкости на эффективность колонны был выполнен Хьюбером и Хильтенбруннером [5]. Они приняли за основу модель, представляющую собой колонну с четырехугольным поперечным сечением, разделенную воображаемой продольной перегородкой на два отдельных отсека, работающих при неодинаковых нагрузках. В качестве критерия (коэффициента) неравномерности орошения I было принято относительное отклонение локальной плотности орошения от ее среднего значения, рассчитанного для поперечного сечения колонны [c.44]

    Кривая равновесия у—х показывает связь между концентрацией жидкости л и соответствующей концентрацией пара у, находящегося в состоянии равновесия с жидкостью. Следовательно, кривая равновесия является основой для расчета числа теоретических ступеней разделения по графическому методу Мак-Кэба и Тиле [771, который успешно и широко применяется благодаря своей простоте. На рис. 43 в ряду П1 представлены кривые равновесия для смесей различных типов. Для смесей взаимно нерастворимых компонентов кривая равновесия представляет собой прямую линию (тип 1), которая пересекает диагональ в одной точке, называемой азеотропной. В этой точке составы пара и жидкости одинаковы обогащение паров легколетучим компонентом при более высокой концентрации жидкости х уже невозможно напротив, в этой области концентраций пар содержит меньше легколетучего компонента, чем жидкость. При перегонке смесей взаимно нерастворимых компонентов (тип 1) или смесей только частично растворимых компонентов (тип 2) дистиллят имеет один и тот же состав в широком интервале изменения концентрации легколетучего компонента в кипящей жидкости и только в непосредственной близости от концентраций О и 100% появляются промежуточные составы дистиллята. Для смесей с максимумом на кривой давления паров при концентрации жидкости выше азеотропной (тип 3), а для смесей с минимумом на кривой давления паров при концентрации жидкости меньше азеотропной (тип 5) пары содержат меньше легколетучего компонента, чем исходная жидкость состава л . Для смесей типа 4 характерна форма кривой равновесия у —х, свойственная идеальным смесям, для которых у всегда больше х. [c.76]

    Данные по равновесию пар—жидкость в бинарных и многокомпонентных смесях лежат в основе расчета необходимого числа теоретических ступеней разделения и других параметров процесса ректификации. Ландольт и Бернштайн [c.86]

    Различия в мольных энтальпиях испарения могут оказывать заметное влияние на число теоретических ступеней разделения особенно при малых флегмовых числах или при малой относительной летучести компонентов и высокой разделительной способности колонны. Графический метод Мак-Кэба и Тиле в этом случае заметно усложняется, так как при этом рабочие линии процесса ректификации не являются прямыми. Однако видоизменение метода Мак-Кзба и Тиле, предложенное Фишером [134], относительно упрощает графические построения. Биллет [135] вывел уравнения для расчета рабочих линий, соответствующих процессу ректификации бинарных смесей при различных мольных энтальпиях испарения компонентов. Тум [136] разработал метод прямого расчета числа теоретических ступеней разделения при ректификации идеальных бинарных смесей с конечным флегмовым числом, в котором учтены различия в энтальпиях испарения. [c.98]

    РАСЧЕТ ЧИСЛА ТЕОРЕТИЧЕСКИХ СТУПЕНЕЙ РАЗДЕЛЕНИЯ ПО МЕТОДУ МАК-КЭБА И ТИЛЕ ДЛЯ ПЕРИОДИЧЕСКОЙ РЕКТИФИКАЦИИ [c.100]

    Следует выяснить, насколько уменьшается число теоретических ступеней разделения с увеличением флегмового числа. В табл. 12 приведены числа теоретических ступеней, необходимые для разделения смеси бензол—толуол при разных флегмовых числах. На рис. 60 показана кривая равновесия этой смеси с соответствующими рабочими линиями. [c.101]

    Чтобы не получить слишком большого числа теоретических ступеней разделения, примем флегмовое число и = 1, тогда отре- [c.104]

    Для ректификации с бесконечным флегмовым числом Штаге и Шульце [146] предлагают метод расчета числа теоретических ступеней, который связан с построением так называемой дифференциальной кривой. Согласно этому методу по возможности в большем масштабе (ось абсцисс примерно 1 м) строят график зависимости разности у —от Хд- Таким образом получают дифференциальную кривую выпуклой формы (рис. 69). С помощью кривой строят график зависимости число теоретических ступеней разделения — концентрация (рис. 70). Построение начинают с очень низкой концентрации, например 0,16% (мол.), которой на дифференциальной кривой (см. рис. 69) соответствует обогащение у —Хв) = 0,28%. Это значение прибавляют к 0,16% и получают концентрацию жидкости на второй тарелке, равную 0,44%. Для этого значения на диаграмме снова определяют обогащение, [c.109]


Смотреть страницы где упоминается термин Число теоретических ступеней разделения,: [c.13]    [c.84]    [c.93]    [c.110]   
Руководство по лабораторной ректификации 1960 (1960) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция число теоретических ступеней разделения

Аналитические методы определения числа теоретических ступеней разделения для периодической ректификации

Другие методы расчета числа теоретических ступеней разделения и их сравнительная оценка

Жидкостная экстракция число теоретических ступеней разделения

Многокомпонентная ректификация число теоретических ступеней разделения

Определение числа теоретических ступеней разделения для смесей со слабо выпуклыми кривыми равновесия и при небольшом расстоянии между кривой равновесия и рабочей линией

Определение числа теоретических ступеней разделения по методу Мак-Кэба и Тиле для смесей с кривыми равновесия, имеющими точку перегиба и азеотропную точку

Определение числа теоретических ступеней разделения по разности температур кипения

Определение числа теоретических ступеней разделения, при периодической и непрерывной ректификации многокомпонентных смесей

Расчет минимального числа теоретических ступеней разделения по уравнению Фенске для идеальных смесей при v оо

Расчет числа теоретических ступеней разделения с помощью фактора обогащения и формул Роуза

Ступень

Ступень ступени

Теоретическая ступень разделения

Число ступеней

Число ступеней разделения в массообменных аппаратах теоретических, многокомпонентная

Число ступеней разделения в массообменных теоретических, многокомпонентная

Число теоретических

Число теоретических ступеней

Число теоретических ступеней разделения (число теоретических тарелок)

Число теоретических ступеней разделения и число единиц переноса

Число теоретических тарелок (ступеней разделения)



© 2025 chem21.info Реклама на сайте