Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические генераторы

    Принцип электрохимического генератора был сформулирован еще в прошлом веке, когда предпринимались ПОПЫТКИ использования реакций окисления природных видов топлива для прямого получения электрической энергии. [c.263]

    При конструировании электрохимических генераторов — топливных элементов — применяются электроды с пористой структурой. Это привело к развитию теории пористых электродов. В топливном элементе электрохимическое горючее (восстановитель) и окислитель [c.222]


    Устройство электрохимического генератора приведено на рис. 97. Электрохимическое горючее и окислитель подводятся к электродам, где вступают в электрохимические реакции. Электроды источника тока — катализаторы этих реакций. Специальная система обеспечивает отвод продуктов реакции. [c.220]

    Аналогичные эффекты получаются при использовании тканевых электродов с начесом для электрохимических генераторов. Но в этом случае наблюдается лучшее удержание катализатора. [c.626]

    Электрохимические источники тока делят на три группы первичные источники тока, вторичные источники тока (аккумуляторы) и электрохимические генераторы. Наиболее распространен- 260 [c.260]

    Особенность электрохимических генераторов состоит в том, что электрохимически активные вещества не закладываются заранее при изготовлении электродов, как для обычных источников тока, а подводятся по мере израсходования. Это обеспечивает непрерывность работы источника тока теоретически в течение сколь 262 [c.262]

    К настоящему времени созданы электрохимические генераторы мощностью от десятков ватт до тысячи киловатт. Удельная энергия их зависит от вида и количества запасенного топлива в емкостях для хранения. Она значительно выше удельной энергии гальванических элементов. Наиболее разработаны кислородно-водородные генераторы,которые уже применяются на космических кораблях. Они обеспечивают космический корабль и космонавтов не только электроэнергией, но и водой, которая является продуктом реакции в топливном элементе. Удельная энергия этих генераторов составляет 400—800 Вт ч/кг, а к. п. д. — 60—70%. Для некоторых условий, например при продолжительности полета космического корабля около месяца и мощности до 10 кВт, электрохимический генератор является наиболее оптимальной энергетической установкой космического корабля. [c.363]

    Особенность электрохимических генераторов состоит в том, что электрохимически активные вещества не закладываются заранее при [c.219]

    В четвертой и пятой главах были рассмотрены электродные процессы в растворах органических соединений, в ходе которых органическое вещество не претерпевает электрохимических превращений, а, адсорбируясь на электроде, влияет на скорость электродного процесса с участием неорганических ионов или молекул. Последующие главы посвящены изложению современных представлений об электродных превращениях самих органических соединений. Такие процессы лежат в основе электросинтеза органических веществ и работы электрохимических генераторов электрической энергии — топливных элементов с органическим горючим. [c.188]


    Одной из важнейших проблем современной электрохимии является создание гальванических элементов непрерывного действия, которые бы генерировали электрическую энергию за счет окисления дешевых компонентов (природного газа, водорода). Такие элементы, получившие название топливных, вместе со всеми вспомогательными устройствами называются электрохимическими генераторами. В отличие от обычных гальванических элементов в топливных элементах активные [c.378]

    Генераторы прямого преобразования тепловой и химической энергии в электрическую. Том I. Г. Л. Резников. Электрохимические генераторы [c.125]

    Специальная часть химии включает в себя химию конструкционных и электротехнических материалов, химию воды и топлива и специальные разделы электрохимии. Рассмотрены свойства металлов, особое внимание уделено -элементам и материалам ядерных реакторов. Освещено получение и свойства полимерных материалов. Приведены химические свойства воды, описаны методы очистки природных и сточных вод. Рассмотрено строение и химические свойства топлива, проблемы водородной энергетики. Описаны химические источники тока и электрохимические генераторы, электрохимические методы обработки и осаждения металлов. Особое внимание в учебнике уделяется проблеме охраны окружающей среды. [c.3]

    Природные запасы соединений водорода огромны. Водород легко вступает в химические реакции, при его окислении выделяется большое количество тепла. Поэтому водород может найти широкое применение в промышленности и быту, для синтеза различных соединений, освещения, отопления и охлаждения, приготовления пищи и для получения электроэнергии при помощи электрохимических генераторов. [c.356]

    Топливные элементы и электрохимические генераторы. Если окислитель и восстановитель хранятся вне элемента и в процессе работы подаются к электродам, которые не расходуются, то элемент может работать длительное время. Такие элементы получили название топливных элементов. [c.361]

    С проблемой электрохимического генератора связана проблема водородной энергетики, в которой превращение химической энергии в электрическую будет осуществляться в электрохимическом генераторе. Электрохимические генераторы пока еще относительно дороги. Для широкого их применения ведутся работы по изысканию более дешевых и активных катализаторов электродов. [c.363]

    В гальванических элементах широко используется принцип подачи активных реагентов по мере их расходования. В этом случае они могут работать долгое время и называются электрохимическими генераторами. [c.261]

    Коровин Н, В. Электрохимические генераторы.— М. Энергия, 1974. [c.315]

    Особой разновидностью химических источников тока являются электрохимические генераторы или топливные элементы. В топливном элементе химическая энергия реакции горения (окисления) топлива непосредственно превращается в электрическую энергию. Поэтому КПД его превышает 80%. [c.246]

    Электрохимические источники тока делят на три группы первичные источники тока, вторичные источники тока (аккумуляторы) и электрохимические генераторы. Наиболее распространенным примером первого типа источников тока может служить элемент Лекланше  [c.218]

    Топливный элемент (ТЭ)—это ХИТ, в котором реагенты (топливо, т. е. восстановитель, и окислитель) непрерывно и раздельно подводятся к электродам. Таким образом, ТЭ преобразует химическую энергию в электрическую до тех пор, пока в него поступают реагенты. ТЭ входят в состав электрохимического генератора (ЭХГ), который включает батарею ТЭ, устройства для переработки и подвода топлива и окислителя, для вывода продуктов реакции, контроля и поддержания температуры и другие устройства. [c.40]

    Этот термин часто применяют вместо термина электрохимический генератор . В качестве окислителя в топливных элементах почти всегда используют или чистый кислород, или кислород воздуха. В качестве топлива применяются водород, гидразин, метанол, муравьиная кислота, оксид углерода, углеводороды, уголь и др. Практическое применение нашли пока первые три вида электрохимического горючего, а наибольшие успехи достигнуты в разработке водородно-кислородного топливного элемента, в котором происходит реакция 2Н2+О2—>-2Н20. [c.263]

    По отдельным направлениям электрохимической энергетики, таким, как химические источники тока, электрохимические генераторы, электрохимические аспекты водородной энергетики, электрокатализ и другие, в нашей стране изданы книги, имеются обзоры по этим вопросам [1-20], однако до сих пор не было обобщающей публикации по общим вопросам электрохимической энергетики. Автор взял на себя смелость в какой-то мере восполнить этот пробел. [c.3]

    Создание целого ряда источников тока, в частности электрохимических генераторов на углеводородном горючем, непосредственно упирается в необходимость увеличения скоростей соответствующих электродных процессов. Поэтому одним из важных направлений современных электрохимических исследований в области топливных элементов является изыскание новых эффективных и малодефицитных катализаторов. [c.227]

    Водородно-кислородные электрохимические генераторы, которые работают при низких (до 100 °С) и средних температурах (100—200 °С), используются успешно в космических аппаратах. Водородно-воздушные генераторы перспективны для городского транспорта, так как в отличие от ядовитых продуктов сгорания бензина при их работе образуется только вода. Для космических аппаратов это играет особую роль, так как образующаяся вода используется для лшэнеобеспечения космонавтов. [c.379]


    Гидразин используют как антикоррозионный агент для уда.1ения кислорода (вызывающего коррозию) из воды, питающей котлы электростанций, теплоцентралей и т. п., как восстановитель - топливо а топливных элементах (электрохимических генераторах). [c.411]

    В отличие от гальванических элементов топливные элементы не могут работать без вспомогательных устройств. Для увеличения напряжения и тока элементы соединяют в батареи. Для обеспечения непрерывной работы батареи топливных элементов необходимы устройства для подвода в элемент топлива и окислителя, вывода продуктов реакции и тепла из элемента. Система, состоящая из батареи топливных элементов, устройств для подвода топлива и окислителя, вывода из элемента продуктов реакции, поддержания и регулирования температуры, получила название электрохимического генератора. Электрохимические генераторы могут включать в себя устройства для обработки топлива или окислителя. Например, углеюдороды подвергают обработке водяным паром в присутствии катализаторов для получения водорода, который затем направляется в топливный элемент  [c.363]

    Для интенсификации процесса электрохимической регенерации отработанного железомеднохлоридного травильного раствора (см. задачу 355) использован смешанный электрохимически-химический метод. В ходе его регенерируемый раствор проходит последовательно катодное и анодное пространства электрохимического генератора. Для интенсификации процесса и повышения катодного выхода по току меди электролиз проводят при высокой плотности тока, когда на аноде уже частично выделяется хлор. Анодные газы непрерывно отсасываются из анодной ячейки электролизера и пропускаются в абсорбере через раствор, прошедший электрохимическую регенерацию. В абсорбере хлор окисляет оставшееся в электролите двухвалентное железо. [c.258]

    В настоящее время созданы электрохимические генераторы, которые работают при непрерывной подаче к электродам веществ, участвующих в токообразующей реакции, и при одновременном отводе продуктов реакции. Например, в водородокислородный электрохимический генератор подаются газообразный водород и кислород. На одном из электродов происходит окисление водорода, а на другом — восстановление кислорода. Образующаяся вода [c.10]

    Еще в 1839 г. Грове получил ток от кислородно-водородного элемента. Однако он не представлял себе возможности практиче,-. ского использования подобного источника тока. Попытку создания топливного элемента, пригодного для практики, впервые осущест-5 вил Павел Николаевич Яблочков. Им были разработаны в 1895 г." элементы с газовыми электродами. Теоретические вопросы, связан- ные с созданием топливных элементов, изучали многие крупные зарубежные ученые — Оствальд, Нернст, Грубе и другие и СССР — Фрумкин и ряд ученых его школы. Особенно большое внимание разработке топливных элементов стали уделять после второй мировой войны. Над этой проблемой работает ряд коллек-] тивов исследователей. Однако применение топливных элементов, пока еще очень ограничено. В настоящее время называют топливными элементами все элементы, в которых активные материалы не заключены в самом элементе, а подаются в него непрерывно. Системы из топливных элементов и относящихся к ним вспомогательных устройств, например для регулировки давления газов, называют электрохимическими генераторами энергии. В качестве окислителя на положительном электроде в топливных элементах чаще всего используют кислород. Существуют элементы с жидкими окислителями — азотной кислотой и др., но они не получили пока распространения. Работа кислородного электрода была рассмотрена ранее. На отрицательном электроде в качестве активных веществ (топлива) используют газообразные (водород), жидкие (метанол, гидразин и др.) и твердые вещества. Некоторые виды топлива (метан, уголь) электрохимически инертны, их ионизация протекает так медленно, что практически процесс не осуществим без принятия специальных мер. Для ускорения реакции используют два способа электроды изготавливают из веществ, каталитически ускоряющих процесс, и работа ит при повышенных температурах. [c.352]

    Излагаются теоретические основы электрохимической знергетн-ки. Рассматриваются устройство и характеристики топливньи элементов электрохимических генераторов, энергоустановок и электростанций. Описаны электрохимические способы получения водорода, приводятся технико-экономический анализ этих способов и обласА их применения. Рассматриваются электрохимический метод аккумулирования энергии, различные виды аккумуляторов. [c.2]

    Электрохимические генераторы, энергоустановки и электростанции. Топливный элемент, как и ПЭ, кроме электродов и ионного проводника включает ряд дополнительных частей, таких, как межэлектродные мембраны, уплотнитель ные и дистанционирующие прокладки, камеры для реагентов и др. В отличие от первичного ХИТ, топливные элементы не могут работать самостоятельно. Для обеспечения работы ТЭ необхо ДИМЫ непрерывная подача топлива и окислителя, а также отво продуктов реакции. В ТЭ наряду с генерацией электроэнергто выделяется тепло, которое необходимо от него отводить. Такик образом, ТЭ может работать лишь при наличии вспомогатель ных устройств, обеспечивающих подвод реагентов, отвод про дуктов реакции и тепла. [c.12]


Библиография для Электрохимические генераторы: [c.315]    [c.584]   
Смотреть страницы где упоминается термин Электрохимические генераторы: [c.62]    [c.194]    [c.236]    [c.220]    [c.220]    [c.295]    [c.357]    [c.491]    [c.10]    [c.81]   
Прикладная электрохимия (1984) -- [ c.40 ]

Прикладная электрохимия Издание 3 (1984) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Генератор

Генератор электрохимически

Генератор электрохимически

Гидразиновые электрохимические генераторы

Карно цикла электрохимического генератора

Некоторые варианты электрохимических генераторов Топлива, применяемые в ЭХГ

Новые перспективные методы производства и использования водорода Электрохимические генераторы

Общие понятия о топливном элементе и электрохимическом генераторе

Общие понятия об электрохимическом генераторе Основные процессы в топливном элементе

Особенности конструирования электрохимических генераторов Требования, предъявляемые к конструкции ЭХГ

Принципы построения схем электрохимических генераторов Синтез схем ЭХГ

Типы электрохимических генераторов

Топливные элементы (ТЭ) и электрохимические генераторы (ЭХГ)

Фотосинтетические генераторы протонного электрохимического потенциала

Электрохимические генераторы с ионообменными мембранами Ионообменные мембраны для ТЭ и их свойства

Электрохимические генераторы с конверсией углеродсодержащего топлива



© 2024 chem21.info Реклама на сайте