Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генератор электрохимически

    При конструировании электрохимических генераторов — топливных элементов — применяются электроды с пористой структурой. Это привело к развитию теории пористых электродов. В топливном элементе электрохимическое горючее (восстановитель) и окислитель [c.222]

    Принцип электрохимического генератора был сформулирован еще в прошлом веке, когда предпринимались ПОПЫТКИ использования реакций окисления природных видов топлива для прямого получения электрической энергии. [c.263]


    Устройство электрохимического генератора приведено на рис. 97. Электрохимическое горючее и окислитель подводятся к электродам, где вступают в электрохимические реакции. Электроды источника тока — катализаторы этих реакций. Специальная система обеспечивает отвод продуктов реакции. [c.220]

    Для получения электролитического водорода могут быть использованы также выпускаемые промышленностью генераторы водорода для хроматографии . Однако получаемый таким образом водород перед пропусканием в электрохимическую ячейку должен проходить описанную выше систему очистки. [c.34]

    Аналогичные эффекты получаются при использовании тканевых электродов с начесом для электрохимических генераторов. Но в этом случае наблюдается лучшее удержание катализатора. [c.626]

    Источниками постоянного тока при электрохимической обработке металлов служат электродвигатели — генераторы низкого напряжения, рассчитанные на большую силу тока, или полупроводниковые многоамперные выпрямители, состоящие из трансформатора и вентиля, пропускающего электрический ток только в одном направлении электронные, селеновые, германиевые, кремниевые и др. В практике электролитических цехов покрытий применяют индивидуальное питание отдельных ванн и питание одновременно нескольких ванн, включенных параллельно. Регулировать [c.452]

    Специальная часть химии включает в себя химию конструкционных и электротехнических материалов, химию воды и топлива и специальные разделы электрохимии. Рассмотрены свойства металлов, особое внимание уделено -элементам и материалам ядерных реакторов. Освещено получение и свойства полимерных материалов. Приведены химические свойства воды, описаны методы очистки природных и сточных вод. Рассмотрено строение и химические свойства топлива, проблемы водородной энергетики. Описаны химические источники тока и электрохимические генераторы, электрохимические методы обработки и осаждения металлов. Особое внимание в учебнике уделяется проблеме охраны окружающей среды. [c.3]

    С проблемой электрохимического генератора связана проблема водородной энергетики, в которой превращение химической энергии в электрическую будет осуществляться в электрохимическом генераторе. Электрохимические генераторы пока еще относительно дороги. Для широкого их применения ведутся работы по изысканию более дешевых и активных катализаторов электродов. [c.363]

Рис. 109. Принципиальная схема установки для регистрации переменноточных полярограмм г — генератор синусоидальных колебаний R — эталонное сопротивление С, н Св — 4оиденсаторы У — усилитель Д — детектор ЭЯ— электрохимическая ячейка СХ — синхронизатор СП — са-мописец Р — реохорд А — аккуму-лятор Рис. 109. <a href="/info/1494867">Принципиальная схема установки</a> для регистрации переменноточных полярограмм г — <a href="/info/525532">генератор синусоидальных</a> колебаний R — эталонное сопротивление С, н Св — 4оиденсаторы У — усилитель Д — детектор ЭЯ— <a href="/info/1060401">электрохимическая ячейка</a> СХ — синхронизатор СП — са-мописец Р — реохорд А — аккуму-лятор

    По отдельным направлениям электрохимической энергетики, таким, как химические источники тока, электрохимические генераторы, электрохимические аспекты водородной энергетики, электрокатализ и другие, в нашей стране изданы книги, имеются обзоры по этим вопросам [1-20], однако до сих пор не было обобщающей публикации по общим вопросам электрохимической энергетики. Автор взял на себя смелость в какой-то мере восполнить этот пробел. [c.3]

    Генераторы электрохимические и термоэлектрические [c.199]

    Электрохимические источники тока делят на три группы первичные источники тока, вторичные источники тока (аккумуляторы) и электрохимические генераторы. Наиболее распространен- 260 [c.260]

    Генераторы электрохимические различного назначения / [c.199]

    Особенность электрохимических генераторов состоит в том, что электрохимически активные вещества не закладываются заранее при изготовлении электродов, как для обычных источников тока, а подводятся по мере израсходования. Это обеспечивает непрерывность работы источника тока теоретически в течение сколь 262 [c.262]

    Источники тока химические, физические, генераторы электрохимические и термоэлектрические [c.198]

    Электрическое поле для обесцвечивания растворов органических красителей целесообразно не только как внешнее силовое коагулирующее поле, но и как генератор электрохимических процессов, вызывающих деструкцию органических красителей, т. е. изменение их структуры под действием образующихся при электролизе кислорода или активного хлора . [c.100]

    Особенность электрохимических генераторов состоит в том, что электрохимически активные вещества не закладываются заранее при [c.219]

    Схема установки для измерения осциллографических полярограмм показана на рис. 111. Она включает генератор пилообразных импульсов напряжения Г, при помощи которого потенциал электрода можно изменять в соответствии с уравнением (41.1). Последовательно с электрохимической ячейкой ЭЯ включено эталонное сопротивление R. Падение напряжения на этом сопротивлении, пропорциональное току /осц, через усилитель поступает на вертикальные пластины осциллографа О. Осциллограф работает в режиме ждущей развертки, т. е. движение электронного луча начинается одновременно с началом изменения потенциала, что обеспечивается связью между осциллографом и генератором импульсов. Если используется капельный ртутный электрод, то в схему включается еще и синхронизатор СХ, при помощи которого развертка потенциала подается на ячейку в заданный момент жизни капли. Время развертки подбирается таким, чтобы поверхность капли в течение импульса существенно не изменилась. Поэтому обычно осциллографическая полярограмма измеряется за доли секунды. При помощи описанной установки определяют зависимость тока от вре- [c.219]

    Г—генератор синусоидального напряжения Я1, 2—эталонные сопротивления О — катодный осциллограф J — магазины сопротивления и емкости Я — электрохимическая ячейка 1 — рабочий электрод 2 — вспомогательный электрод 3 — электрод сравнения КВ — катодный вольтметр Д — дроссель р — делитель напряжения [c.155]

    Электрохимическая ячейка с импедансом 2з включается в одно из плечей моста. В смежном плече находятся последовательно соединенные магазины емкости и сопротивления, общее сопротивление которых переменному току равно 2 . В два других плеча моста включены эталонные элементы (обычно омические сопротивления). Синусоидальное напряжение в методе импедансного моста задается генератором переменного тока Г), а средний потенциал рабочего электрода ср —схемой постоянного тока (потенциостатом). Таким образом, в описанной схеме [c.168]

    В четвертой и пятой главах были рассмотрены электродные процессы в растворах органических соединений, в ходе которых органическое вещество не претерпевает электрохимических превращений, а, адсорбируясь на электроде, влияет на скорость электродного процесса с участием неорганических ионов или молекул. Последующие главы посвящены изложению современных представлений об электродных превращениях самих органических соединений. Такие процессы лежат в основе электросинтеза органических веществ и работы электрохимических генераторов электрической энергии — топливных элементов с органическим горючим. [c.188]

    Принципиальная схема этого метода приведена на рис. УП.17. Монохроматический свет от источника И проходит через поляризатор П, а затем через кварцевое окошко в электрохимической ячейке попадает на рабочий электрод 1. При помощи потенциостата Пс, соединенного с генератором переменного тока Г, потенциал рабочего электрода изменяется в соответствии с уравнением (Vn.29). Частота переменного тока to обычно составляет 1—2 кГц. Отраженный от электро-да свет, интенсивность которого содержит постоянную Ro и переменную AR составляющие, подается на фотоэлектронный умножитель ФЭУ. Выходящий на ФЭУ электрический сигнал поступает в два параллельно включенных усилителя V .Ro и Ус. АТ . [c.183]


    В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы). [c.394]

    В отличие от гальванических элементов топливные элементы не могут работать без вспомогательных устройств. Для увеличения напряжения и тока элементы соединяют в батареи. Для обеспечения непрерывной работы батареи топливных элементов необходимы устройства для подвода в элемент топлива и окислителя, вывода продуктов реакции и тепла из элемента. Система, состоящая из батареи топливных элементов, устройств для подвода топлива и окислителя, вывода из элемента продуктов реакции, поддержания и регулирования температуры, получила название электрохимического генератора. Электрохимические генераторы могут включать в себя устройства для обработки топлива или окислителя. Например, углеюдороды подвергают обработке водяным паром в присутствии катализаторов для получения водорода, который затем направляется в топливный элемент  [c.363]

    Замена в электрохимических ироизводствах, использующих постоянный ток мотор-генераторов (илн вращающихся преобразователей), ртутных выпрямителей на силовые полупроводниковые выпрямители дает большой экономический эффект. Он заключается в простоте эксплуатации, в новышенин КПД на 8—9 % по сравнению с моторгенераторами и на 2—3 % выше, чем у ртутных выпрямителей. [c.186]

    Электрохимические источники тока делят на три группы первичные источники тока, вторичные источники тока (аккумуляторы) и электрохимические генераторы. Наиболее распространенным примером первого типа источников тока может служить элемент Лекланше  [c.218]

    Для контроля параметров средств электрохимической защиты подземных металлических сооружений от почвенной коррозии и коррозии, вызываемой блуждающими токами, а также контроля изоляционных покрытий применяют передвижную электроисследо-вательскую лабораторию электрохимической защиты ПЭЛ ЭХЗ. Лабораторию широко используют на магистральных трубопроводах, нефтебазах, подземных хранилищах нефти и газа, нефтяных и газовых промыслах для обследования трубопроводов и обсадных колонн скважин. На основании проведенных измерений и их обработки принимают решение о состоянии покрытия изоляционного или выполняют проектирование и наладку (назначение электрических параметров) электрохимической защиты. Лаборатория ПЭЛ ЭХЗ оборудована генератором постоянного тока с максимальной мощностью = [c.66]

Рис. 19.4. Майкл Фарадей (1791-1867). Фарадей родился в Англии в семье бедного кузнеца, имевшего десять детей. В 14 лет его отдали в ученики к переплетчику, который проявил необычную снисходительность к мальчику, дав ему возможность читать и даже посещать лекции. В 1812 г. Фарадей стал ассистентом в лаборатории Гемфри Дэви в Королевском институте. В конце концов он стал наиболее знаменитым и влиятельным ученым в Англии после Дэви. За время своей научной карьеры Фарадей сделал поразительное число важных открытий в области химии и физики. Он разработал методы сжижения газов, открыл бензол и сформулировал количественные соотношения между силой электрического тока и степенью протекания химической реакции в электрохимических элементах, которые вырабатывают или используют электрическую энергию. Кроме того, он разработал принцип действия первого электрического генератора и заложил основы современной теории электрических явлений. ( ulver Pi tures) Рис. 19.4. <a href="/info/269638">Майкл Фарадей</a> (1791-1867). Фарадей родился в Англии в семье бедного кузнеца, имевшего десять детей. В 14 лет его отдали в ученики к переплетчику, который проявил необычную снисходительность к мальчику, дав ему возможность читать и даже посещать лекции. В 1812 г. Фарадей <a href="/info/6998">стал</a> ассистентом в лаборатории <a href="/info/269555">Гемфри Дэви</a> в Королевском институте. В <a href="/info/143469">конце концов</a> он <a href="/info/6998">стал</a> наиболее знаменитым и влиятельным ученым в Англии после <a href="/info/1846077">Дэви</a>. За время своей научной карьеры Фарадей сделал поразительное число <a href="/info/1911910">важных открытий</a> в <a href="/info/1484200">области химии</a> и физики. Он разработал <a href="/info/743920">методы сжижения газов</a>, <a href="/info/1555076">открыл бензол</a> и сформулировал <a href="/info/1840964">количественные соотношения</a> между <a href="/info/594498">силой электрического</a> <a href="/info/1370574">тока</a> и степенью <a href="/info/861736">протекания химической реакции</a> в <a href="/info/133247">электрохимических элементах</a>, которые вырабатывают или используют <a href="/info/609963">электрическую энергию</a>. Кроме того, он разработал <a href="/info/1488272">принцип действия</a> первого электрического генератора и заложил основы <a href="/info/1704099">современной теории</a> <a href="/info/1760853">электрических явлений</a>. ( ulver Pi tures)
    Этот термин часто применяют вместо термина электрохимический генератор . В качестве окислителя в топливных элементах почти всегда используют или чистый кислород, или кислород воздуха. В качестве топлива применяются водород, гидразин, метанол, муравьиная кислота, оксид углерода, углеводороды, уголь и др. Практическое применение нашли пока первые три вида электрохимического горючего, а наибольшие успехи достигнуты в разработке водородно-кислородного топливного элемента, в котором происходит реакция 2Н2+О2—>-2Н20. [c.263]

    Создание целого ряда источников тока, в частности электрохимических генераторов на углеводородном горючем, непосредственно упирается в необходимость увеличения скоростей соответствующих электродных процессов. Поэтому одним из важных направлений современных электрохимических исследований в области топливных элементов является изыскание новых эффективных и малодефицитных катализаторов. [c.227]

    Методика измерения электродного импеданса. Рассмотрим три наиболее часто использующихся способа измерения импеданса электрохимических систем, находящихся в состоянии равновесия. Блок-схема простейшей установки для определения импеданса показана на рис. 4.33. Она включает в себя генератор синусоидальных сигналов (например, Г6-26, Г6-27, Г6-28 и т. д.) осциллограф (желательно двухлучевой, например С-8-13) или двухкоординатный самописец для случая, когда измерения проводят при низких частотах переменного гока усилитель тока (можно использовать преобразователь ток-напряжение, см. с. 43) катодный вольтметр и вольтметр переменного напряжения. При наложении между рабочим и вспомогательным электродами переменного напряжения от генератора на экране двухлучевого осциллографа будут синхронно фиксироваться две синусоиды одна—соответствующая переменному напряжению от генератора, вторая — пропорциональная протекающему через систему переменному току той же частоты. Измеряя амплитудные и фазовые характеристики этих двух синусоид, весьма просто рассчитать модуль импеданса и сдвиг фаз между действительной и мнимой составляющими импеданса (см. с. 50). [c.263]


Смотреть страницы где упоминается термин Генератор электрохимически: [c.62]    [c.194]    [c.251]    [c.146]    [c.215]    [c.236]    [c.220]    [c.220]    [c.295]   
Химический энциклопедический словарь (1983) -- [ c.584 ]




ПОИСК





Смотрите так же термины и статьи:

Генератор

Гидразиновые электрохимические генераторы

Карно цикла электрохимического генератора

Некоторые варианты электрохимических генераторов Топлива, применяемые в ЭХГ

Новые перспективные методы производства и использования водорода Электрохимические генераторы

Общие понятия о топливном элементе и электрохимическом генераторе

Общие понятия об электрохимическом генераторе Основные процессы в топливном элементе

Особенности конструирования электрохимических генераторов Требования, предъявляемые к конструкции ЭХГ

Принципы построения схем электрохимических генераторов Синтез схем ЭХГ

Типы электрохимических генераторов

Топливные элементы (ТЭ) и электрохимические генераторы (ЭХГ)

Фотосинтетические генераторы протонного электрохимического потенциала

Электрохимические генераторы

Электрохимические генераторы

Электрохимические генераторы с ионообменными мембранами Ионообменные мембраны для ТЭ и их свойства

Электрохимические генераторы с конверсией углеродсодержащего топлива



© 2025 chem21.info Реклама на сайте