Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки и кинетические свойства комплексов

    Для каждого из указанных случаев сначала рассмотрим, что может и чего не может сделать небелковый комплекс металла, а затем сформулируем проблемы, которые надо разрешить. После этого перейдем к рассмотрению того, каким образом белки позволяют разрешить эти проблемы. Мы изложим также некоторые сведения о распространении, функциях и природе этих белков, которые необходимы для понимания их физиологической роли и места в биохимии, а также для того, чтобы показать, что природа нередко создавала совершенно различные пути для решения одних и тех же задач, например для связывания кислорода или удаления перекиси водорода из биологических систем. Такой подход потребовал рассмотрения ряда экспериментальных результатов с несколько иной точки зрения, чем это делалось в других обзорах, а отсюда — более детальное изложение ряда специальных вопросов. В конце гл. 7 —9 дается сводка основных выводов и аргументов, которые привели к этим результатам. Более общие выводы, касающиеся механизмов влияния белков на термодинамические и кинетические свойства комплексов переходных металлов, изложены в разд. 10.1, а затем [c.136]


    Во-первых, усиление каталитической активности в металлоферментах по сравнению с небелковыми комплексами, по-видимому в основном определяется влиянием белка на константы равновесия, а не на константы скорости, т. е. влиянием на термодинамические, а не на кинетические свойства комплекса металла и (или) суб страта. [c.243]

    Такой пример показывает, что для оценки влияния комплексов на действие белков должны быть изучены равновесные и кинетические свойства этих комплексов, а также их структурных изомеров. Для этой цели могут применяться методики изучения кинетики быстрых (10 с) и очень быстрых (10 с) реакций [763—766], скорости которых близки к скоростям процессов, протекающих под диффузионным контролем (10 с). [c.288]

    Теперь мы суммируем приведенные ранее экспериментальные данные (и по ходу дела приведем некоторые дополнительные примеры и теоретические соображения), касающиеся механизмов влияния белка на термодинамические и кинетические свойства комплексов переходных металлов (разд. 10.1), а затем рассмотрим в свете изложенных соображений реакции изомеризации, катализируемые кобальткорриноидами. [c.238]

    Лмеется ряд данных, позволяющих сравнить свойства пероксидазы хрена и небелковых железопорфиринов. Были определены константы скорости реакций второго порядка восстановления Ре -дейтеропорфирина до Ре " различными восстановителями при pH 7,4 [178]. По кинетическим данным не обнаружено отклонений от ожидаемого поведения для простой одностадийной реакции. Если считать, что исходный комплекс был правильно идентифицирован как комплекс Ре (а не Ре ), то это означает, что реакция идет в одну двухэлектронную стадию или 54 < 43, так что экспериментально определяемая константа скорости — 54, а не 43- Но, так как в случае пероксидазы хрена константы 54 и 43, по-видимому, различаются не более чем на два порядка, а мы рассматриваем гораздо большие различия в скоростях, можно пренебречь этим различием в константах. Зависимость скорости реакции от pH не изучена. В табл. 18 приведены данные по скоростям реакций пероксидазы хрена и железодейтеропорфирина с одними и теми же восстановителями и в сопоставимых условиях эксперимента. Как отмечено в работе [178], белок, по-видимому, слабо влияет на константы скорости 54 и (или) 43 по сравнению с тем большим эффектом белка, который наблюдается в отношении констант 35 и 53- Другими словами, белок не обладает общим свойством ускорять все реакции или влиять на субстратную специфичность путем изменения относительных скоростей реакций с различными восстановителями. Были также определены константы скорости железопротопорфирина в присутствии 0,3 М гистидина при pH 6,3— 6,5 с восстановителями лейкоформой красителя малахитового зеленого, гваяколом и пирогаллолом [219]. Константы скорости оценивали, исходя из общей каталитической активности в предположении (по аналогии с пероксидазой хрена), что лимитирующая стадия соответствует k s ( 4 в обозначениях авторов), однако нель- [c.217]


    Моно, Шанжё и Жакоб в классическом обзоре [6] лри рассмотрении свойств треониндезаминазы и других ферментов, участвующих в регуляции метаболизма, ввели термин аллостерический эффектор для регуляторной молекулы (например, L-изолейцина), которая ингибирует (или активирует) определенный фермент. Суть концепции авторов отражена в приводимой ниже цитате из их обзора. Аллостерический эффектор специфически и обратимо связывается с аллостериче-ским участком, фермента. Образование такого комплекса не сопровождается никакой реакцией, в которой участвовал бы сам эффектор, но приводит к скачкообразному обратимому изменению молекулярной структуры белка, т. е. к аллостерическому переходу, при котором изменяются свойства активного центра в результате один (или несколько) кинетических параметров, характеризующих активность фермента, также изменяется. Абсолютно необходимое, хотя и отрицательное положение, предусматриваемое данной концепцией, состоит в том, что аллостерический эффектор не должен иметь какого-либо определенного химического или метаболического отношения к самому субстрату, поскольку эффектор связывается с участком вне активного центра и не участвует в катализируемой реакции. Вот почему специфичность и конкретное проявление любого аллостерического эффекта обусловлены исключительно структурой самой [c.13]


Смотреть страницы где упоминается термин Белки и кинетические свойства комплексов: [c.70]    [c.219]   
Методы и достижения бионеорганической химии (1978) -- [ c.236 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Белки комплекс с ДСН

Комплексы свойства



© 2024 chem21.info Реклама на сайте