Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные свойства комплексов переходных металлов

    Как X, так и М — макроскопические величины. При описании магнитных свойств комплексов переходных металлов обычно используют микроскопический параметр, называемый эффективным магнитным моментом Измеряется он в магнетонах Бора и определяется следующим образом  [c.137]

Таблица 15.2. Спектральные и магнитные свойства комплексов переходных металлов с конфигурацией Таблица 15.2. Спектральные и магнитные свойства комплексов переходных металлов с конфигурацией

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Магнитные свойства комплексов переходных металлов [c.425]

    Магнитные свойства комплексов переходных металлов хорошо объясняются теорией кристаллического поля. Переходные металлы имеют частично заполненные -подуровни электронов, на которых по правилу Хунда будут находиться неспаренные электроны. Например, ион металла, содержащий три -электрона (называемый -системой), [c.53]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Большим успехом ТКП является возможность объяснить магнитные свойства комплексов переходных металлов. Известно, что вещества, содержащие атомы с неспаренными электронами, парамагнитны (втягиваются магнитным полем), тогда как вещества, содержащие только электронные пары,.......... [c.102]

    Ионы многих двухвалентных переходных металлов имеют идентичные заряды и приблизительно одинаковые радиусы, так что энтропии гидратации для них также одинаковы. Таким образом, различие равновесных значений констант образования комплексов для этих ионов, приводящее к различным значениям изменения свободной энергии при образовании комплекса, обусловлено в основном тепловым членом АЯ. Величину этого члена определяют по крайней мере три, не полностью независимых, фактора размер иона, электроотрицательность и угловая поляризация -орбит. Влияние последнего фактора, вклад которого в общую энергию связи составляет около 10%, всесторонне изучено с помощью методов теории поля лигандов. Эта теория успещно объясняет взаимосвязь магнитных и спектральных свойств комплексов переходных металлов, а также равновесных и кинетических параметров таких комплексов, и мы здесь кратко и чисто качественно рассмотрим ее. [c.415]


    Молекулярные орбитали ферроцена строятся как линейные ком- бинации Зс/-, 4s- и 4/7-АО железа и десяти тг-орбиталей колец (по 5 от каждого кольца). Всего возникает 19 МО, среди них связывающие, несвязывающие и разрыхляющие. Сильно связывающими орбиталями являются Oig, а ,,, и На них размещаются 12 электронов. За этой замкнутой оболочкой следук5т несвязывающие орбитали a[g, ig и Электронные конфигурации МО аналогов ферроцена ( ценовых комплексов переходных металлов) имеют вид в согласии с их магнитными свойствами  [c.252]

    Одним из наиболее полезных применений теории поля лигандов либо в простой форме, основанной на электростатической модели (кристаллическое поле), либо в более сложной форме является объяснение и описание магнитных свойств комплексов переходных металлов. Это очень важно, поскольку при правильной интерпретации магнитные свойства этих соединений очень полезны для их идентификации и характеристики. [c.425]

    Мы показали, что магнитные свойства и окраска комплексов переходных металлов зависят от природы лигандов и металла, которая влияет на энергию расщепления кристаллическим полем, А . Тем самым получен ответ на два вопроса из числа поставленных в начале данного раздела. Можно также объяснить необычную устойчивость 3 - и -конфигураций в комплексах с лигандами сильного поля. Эти конфигурации соответствуют полузаполненному и полностью заполненному Г2 ,-уровням. Они обладают повышенной устойчивостью при большом расщеплении уровней по той же причине, по которой устойчивы конфигурации 3 и 3 °, когда все пять -орбиталей имеют одинаковую энергию. Устойчивость 3 - и -конфигураций более заметна в комплексах с лигандами слабого поля, где расщепление кристаллическим полем невелико. [c.237]

    Одновременно величина расщепления зависит и от природы металла, степени его окисления, размера иона, расстояния -орби-талей от ядра атома. Величина расщепления кристаллическим полем и его симметрия определяют магнитные свойства комплексов переходных металлов и их цветность. [c.16]

    Хотя способность образовывать комплексы присуща ионам всех металлов, наиболее многочисленные и интересные комплексы образуют переходные элементы. Уже давно стало понятно, что магнитные свойства и окраска комплексов переходных металлов связаны с наличием a-электронов на атомных орбиталях металла. В данном. разделе мы рассмотрим модель химической связи в комплексах переходных металлов, носящую название теории кристаллического поля такая модель очень хорошо объясняет наблюдаемые свойства этих интересных веществ. [c.390]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]

    Определению магнитных свойств комплексов переходных элементов уделено большое внимание [6, 22, 23]. Их изучение дало ценную информацию о стереохимии, типах связи в комплексах и о степени окисления центрального иона металла. Прежде чем выяснять, каким образом эту информацию удалось получить, нужно рассмотреть типы магнетизма комплексов. [c.471]

    Метод ЭПР позволяет идентифицировать некоторые многоядерные кластеры железа(И1). Традиционная область исследований методом ЭПР — молекулярные свойства комплексов переходных металлов, а не кооперативные свойства взаимодействующих систем. Часто для устранения даже слабых обменных взаимодействий в опытах по ЭПР используют магнитно разбавленные кристаллы или растворы. Из димерных систем методом ЭПР исследованы главным образом комплексы Си(И) [56, 57], однако имеется сообщение [c.342]

    Магнитные свойства. Магнитные свойства комплексов изучают начиная с 1930 г. В комплексах переходных металлов четвертого периода орбитальный момент электрона почти не дает вклада в суммарный магнитный момент (см. примечание к разд. Б.З настоящей главы), который определяется только спиновым моментом и может быть рассчитан по следующей формуле  [c.226]

    Электростатическая теория очень наглядна, и потому для качественных выводов ею широко пользуются и теперь. Однако она не в состоянии объяснить целый ряд фактов 1) почему существуют комплексы с неполярными лигандами и комплексообразователем в нулевой степени окисления, например [Ре(С0)5], [Са(ЫНз)е] и др. 2) почему комплексы переходных металлов второго и третьего рядов характеризуются большей устойчивостью по сравнению с комплексами переходных металлов первого ряда. При одинаковом заряде размеры ионов второго и третьего рядов переходных металлов больше, чем у первого, и поэтому по электростатическим представлениям комплексы тяжелых металлов должны были быть менее устойчивыми 3) чем обусловлены магнитные и оптические свойства комплексных соединений. [c.161]


    Сходным с методом изоморфного замещения для обнаружения или исключения антиферромагнитных взаимодействий является также измерение (с той же целью) веществ в растворах. Во многих случаях измерение магнитных свойств комплекса в растворе может быть столь же эффективным в подавлении этих взаимодействий, как и разбавление в твердом состоянии, а вместе с тем оно осуществляется несравненно проще. Так, антиферромагнитные аномалии, характерные почти для всех простых галогенидов двухвалентных переходных металлов, исчезают при проведении измерений в водных растворах. Однако следует указать на два обстоятельства, связанных с использованием растворов в интересующих [c.407]

    Теория поля лигандов дает простую модель для описания связей в комплексных соединениях переходных металлов и позволяет выяснить, как влияют лиганды на вырождение пяти -орбиталей металла. Рассмотрение такого влияния, как будет показано в этой и следующих главах, помогает понять и даже до некоторой степени предсказать строение, спектры и магнитные свойства комплексов. [c.91]

    Для катионов с недостроенной 18-электронной оболочкой в меньшей степени применимы простые электростатические представления, основанные на законе Кулона. Такие электронные оболочки при действии электроотрицательных лигандов деформируются значительно больше, чем 8-электронные оболочки катионов, и доля ковалентности химической связи металл — лиганд сильно возрастает. Изменение устойчивости комплексов элементов четвертого периода можно объяснить с позиций усовершенствованной электростатической теории, которая принимает во внимание не только чисто кулоновское взаимодействие между частицами, но и форму орбиталей -электронов. Речь идет о теории кристаллического поля, созданной в 30-х годах этого столетия физиками Г. Бете и Ван-Флеком и позже примененной химиками для объяснения спектров поглощения и магнитных свойств комплексов переходных металлов. [c.250]

    Наиболее своеобразными свойствами комплексов переходных металлов, обнаруживаемыми экспериментально, являются их окраска и магнитные свойства. Комплексы переходных металлов обладают самой разнообразной окраской, начиная от бесцветных -соединений цинка н кончая глубокой пурпурной окраской перманганата (МпО -). Для большинства металлов окраска их комплексов зависит от лигандов. Что касается магнитных свойств, то некоторые ионы всегда образуют диамагнитные (выталкиваемые магнитным полем) комплексы, другие всегда дают парамагнитные (втягиваемые в магннтное поле) комплексы, а третьи могут образовывать как диамагнитные, так и парамагнитные комплексы в зависимости от лигандов. У тех ионов, которые всегда дают парамагнитные комплексы, величина парамагнетизма может сильно изменяться в завнсимостк от природы лигандов. Однако это ни в коен мере не связано с изменением числа электронов в системе связей комплекса. Следует также обратить внимание на наличие корреляции мел -ду окраской и магнитными свойствами различных комплексов одного и того же металла. [c.314]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    Функции и строение комплексов переходных металлов, зависящие от природы лигандов, исследовались за последние годы различными физико-химическими методами (ИК-спектроскопия, мёс--сбауеровская спектроскопия, изучение магнитных свойств и др.). [c.229]

    Одно время применяли так называемый магнитный критерий типа связи,согласно которому связи в ннзкоспиновых комплексах ковалентны, а высокоспиновые комплексы имеют ионную связь. Если низкоспиновость обусловлена принудительным спариванием электронов с образованием дативных связей, например, в цианидных комплексах переходных металлов, то действительно очень велика роль ковалентности. Но в некоторых случаях переход от высокоспиновых комплексов к низкоспиновым происходит при одном и том же характере связи за счет понижения симметрии. Иногда монодентатные лиганды образуют высокоспиновые комплексы, а аналогичные хелаты являются низкоспиновыми. Более того, некоторые комплексы имеют изомерные конфигурации (тетраэдрическую и квадратную) с разными магнитными свойствами. Природа снязи в них одинакова. Поэтому в настоящее время магнитный критерий для характеристики типа связи почти не применяется. [c.132]

    Долгое время химиков чрезвычайно занимала проблема образования химической связи в координационных комплексах. Во многих отношениях связь в комплексных соединениях ничем не отличается от связи в ковалентных молекулах образование направленных связей в обоих случаях приводит к возникновению линейных, тетраэдрических и октаэдрических структур. И все же координационные комплексы, особенно комплексные ионы переходных металлов, обладают некоторыми свойствами, которые не наблюдаются у большинства обычных молекул. Химикам не давали покоя многие вопросы, касающиеся строения и свойств таких комплексов. Почему, например, некоторые комплексы обладают плоско-квадратной структурой Почему одни комплексы инертны, а другие лабильны Как связана окраска комплексов с природой их лигандов [например, Си (НгО) имеет бледно-голубую окраску, Си(КНз) —темно-пурпурную, а СиС1 — зеленую] Каким образом зависят от природы лигандов магнитные свойства комплексов [скажем, Ре(Н20)б" обнаруживает парамаг- [c.413]

    Электростатическая теория, илн, иначе, теория кристаллического поля, была первоначально разработана Бете, Ван Флеком и др. в период 1929—1935 гг. для учета магнитных свойств соединений пере.чодных и редкоземельных металлов, в которых имеются несвязывающне d- или /-электроны. Альтернативный метод молекулярных орбиталей был предложен Ван Флеком тоже в 1935 г. После периода относительного забвения начиная с 1950 г. обе теории начали широко использоваться для объяснения спектроскопических, термодинамических и стереохимиче-ских свойств конечных комплексов переходных металлов и не- [c.387]

    Качественное объяснение оптических и магнитных свойств координационных комплексов оказывается возможным на основе рассмотрения расщепления энергетических уровней в системе с одним -электроном (см. рис. 15.3). Соображения, изложенные в разд. 15.3, приводят к выводу об указанном выше снятнп вырождения -уровня, однако они ничего не говорят о величине этого расщепления. В принципе расщепление может быть сколь угодно малым (предел слабого поля) или, наоборот, очень большим (предел сильного поля). Реальное поведение комплексов переходных металлов зависит от природы лигандов. Чем сильнее взаимодействие между лигандами и металлом, тем больше поведение комплекса приближается к пределу сильного поля, и наоборот. В действительности это взаимодействие определяется характером химической связи, а не является чисто электростатическим. Многие незаряженные лиганды создают эффект более сильного поля, чем многие ионные лиганды. Например, для не- [c.320]

    Теория кристаллического поля объяснила магнитные свойства и оптические спектры комплексов переходных металлов в растворе. Дуниц и Орджел [169] применили эту теорию к объяснению кристаллической структуры твердых ионных соединений переходных металлов, в особенности окислов. Например, для ионов Сг + и NP+ октаэдрическая конфигурация дает большую стабилизацию энергии, чем тетраэдрическая. Поэтому последняя для этих элементов в твердых телах почти не наблюдается. Для ионов d°, d , d (Ti +, V +, r +, [c.50]

    Как видно из этого изложения теории поля лигандов, данная теория весьма пригодна для изучения спектров поглощения комплексов переходных металлов, а также может быть. использована для исследования магнитных свойств этих комплексов. Однако она не может дать информации о взаимном обмене электронами между лигандом и ионом металла, т. е. о делокализации электронов. Наряду с указанными применениями в спектроскопии и магнето-химии эта теория может быть использована для качественной интерпретации кинетической устойчивости комплиссных соединений. При этом можно показать, что наибольшая кинетическая устойчивость комплексов переходных металлов с октаэдрической микросимметрией достигается у комплексов, которые не имеют eg-элeкт-ронов. Если же е -электроны присутствуют, то взаимное отталкивание между этими электронами и отрицательными зарядами лигандов приводит к уменьшению кинетической устойчивости. Еще [c.46]

    Некоторые комплексы переходных металлов и.меют линейные мостики М—О—М, например [С15Ки—О—КиСи] магнитные свойства и строение их можно объяснить только при помощи йл—рл-связи с участием кислорода. [c.202]

    Магнитные свойства октаэдрических комплексов будут обсуждаться далее в этой главе, а здесь лишь укажем, что с качественной точки зрения для большинства комплексов переходных металлов эти свойства могут быть объяснены на основе простой модели валентных связей. Так, мы уже видели, что Сг имеет три З -ор-битали, не участвующие в образовании о-связей, и что на каждой из этих орбиталей находится по одному электрону это подтверждается магнитными измерениями. Большинство комплексов трехвалентного кобальта с координационным числом шесть оказались диамагнитными, это находится в соответствии с представлением, что каждая Зс -орбиталь содержит два электрона. сЗднако приближение валентных связей в том виде, в котором мы его используем, является чисто качественным и не объясняет все наблюдаемые явления, в частности, изменение магнитного момента в зависимости от температуры. Это приближение не может предсказать относительные энергии различных возможных геометрических конфигураций, поскольку оно не дает информацию об уровнях энергии, между которыми происходят электронные переходы и не может быть использовано для объяснения электронных спектров комплексов. [c.221]

    Эта теория может быть с пользой применена при обсуждении устойчивости комплексов переходных металлов, механизма их реакций, реакций переноса электронов, стереохимии, магнитных свойств и в некоторых случаях спектров поглощения. Она, видимо, должна бвггь полезной при рассмотрении химии редкоземельных элементов и актинидов, хотя в этом направлении сделано очень мало. К группе редкоземельных элементов относятся элементы от Се до Ьи, имеющие в качестве внешних электронов или Эти элементы отличаются лишь числом 4/-элек- [c.44]

    В сообщении о получении комплексов (СВ (,Н )Мп (С0) и (СВюНц)гСи не приводились детали синтеза [160] и ни один из монокарболлильных комплексов переходных металлов не изучался методом дифракции рентгеновских лучей. Однако для этих соединений ввиду их большого сходства с дикарболлильными комплексами по электронным, магнитным и химическим свойствам совершенно очевидны сандвичевые структуры с я-связями. [c.232]


Смотреть страницы где упоминается термин Магнитные свойства комплексов переходных металлов: [c.315]    [c.403]    [c.29]    [c.53]    [c.262]    [c.232]    [c.247]   
Смотреть главы в:

Основы неорганической химии  -> Магнитные свойства комплексов переходных металлов




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Комплексы свойства

Металло-азо-комплексы

Металлов комплексы

Металлы переходные

Металлы свойства



© 2025 chem21.info Реклама на сайте