Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин связывание кислорода

    К Т (т. е. дезокси-)-структуре. Ясно, что выяснение столь тонкой вещи, как молекулярный механизм кооперативного связывания кислорода гемоглобином, представляет собой весьма сложную задачу. [c.312]

    Часто вместо уравнения (7.69) связывание кислорода гемоглобином описывают уравнением Хилла [c.233]

    Гемы входят в состав гемоглобина, выполняющего в организме функцию переносчика кислорода. Активным центром в процессе связывания кислорода является атом железа (II) гема. Процесс присоединения кислорода обратим в легких, где парциальное давление кислорода высокое,, молекула Од присоединяется к атому железа, а в тканях, где парциальное давление кислорода низкое, кислород освобождается. [c.587]


    Молекула гемоглобина человека, подобно гемоглобину других млекопитающих, состоит из четырех полипептидных цепей (каждая из которых содержит одну гем-группу) и способна обратимо присоединять четыре молекулы кислорода. Уже много лет назад было показано, что равновесное связывание кислорода гемоглобином описывается S-образной кривой, приведенной на рис. 15.12, которая отличается от аналогичной кривой для миоглобина. Для миоглобина, содержащего одну гем-группу в молекуле, следует ожидать кривую равновесия, отвечающую реакции [c.440]

    Рассмотрим теперь вопрос о природе кооперативного связывания кислорода с тетрамерной ( 2 2) молекулой гемоглобина (разд. Г.8) и физиологическое значение этого процесса [65]. Полипептидная цепь [c.304]

    Далее, путем модификации остатка пропионовой кислоты в боковой цепи порфиринового кольца был введен второй имидазольный лиганд, соответствующий проксимальному гистидину природных переносчиков кислорода. Интересно, что все структурные элементы активного центра миоглобина или гемоглобина, которые существенны для связывания кислорода, присутствуют [c.368]

    Связывание кислорода гемоглобином можно описать математически следующим набором равновесий, где НЬ обозначает молекулу гемоглобина, которая может присоединять четыре молекулы кислорода  [c.232]

    Изменение конформации полипептидных цепей гемоглобина при связывании кислорода — пример так называемой аллостерии. Известны аллостерические формы и у других белков, преимущественно у фермен- [c.443]

    Связывание кислорода гемоглобином демонстрирует особые свойства, которые может проявлять белок в реакциях присоединения. В отличие от большинства реакций с участием малых молекул сродство белка к лиганду может возрастать по мере присоединения все новых молекул лиганда. [c.211]

    Приведенные выше биохимические равновесия включали небольшие молекулы, однако во многих таких равновесиях участвуют макромолекулы, например белки и нуклеиновые кислоты. В качестве примера рассмотрим связывание кислорода гемоглобином. [c.231]

    СВЯЗЫВАНИЕ КИСЛОРОДА МИОГЛОБИНОМ И ГЕМОГЛОБИНОМ [c.231]

    Кооперативный характер связывания ферментов с субстратами имеет, пожалуй, такое же большое физиологическое значение, как и кооперативное связывание гемоглобина с кислородом, которое обеспечивает более эффективное высвобождение связанного кислорода в тканях (гл. 4, разд. Д, 5). Кооперативность связывания субстрата отсутствует в том случае, когда благодаря избытку активатора фермент переходит в состояние R (В), при котором связывающие центры ведут себя независимо. В то же время связывание активатора должно характеризоваться сильно выраженной кооперативностью, т. е. скорость реакции должна изменяться при изменении концентрации активатора сильнее, чем в случае гиперболической активации. Аналогичным образом кооперативное связывание ингибитора обеспечивает более быстрое выключение фермента при увеличении концентрации ингибитора. По-видимому, эволюция олигомерных ферментов (по крайней мере отчасти) обусловлена большей эффективностью механизмов регуляции, в основе которых лежит кооперативное связывание эффекторов. [c.39]


    Гемоглобин по своему строению гомологичен миоглобину и практически представляет собой тетрамер миоглобина — оба белка действуют взаимосвязанно в биологических системах. Такая кооперация в действии, помимо прочего, требует от гемоглобина высокого сродства к кислороду при его высоком парциальном давлении и низкого сродства при недостатке кислорода. Рис. 3-39 графически демонстрирует связывание кислорода гемоглобином и миоглобином. Форма кривой сигмоидная для гемоглобина и гиперболическая с крутым подъемом для миоглобина. [c.415]

    Читателю предоставляется интересная возможность проанализировать, можно ли на основании этого уравнения предсказать слабое кооперативное связывание кислорода гемоглобином миноговых. [c.302]

    Для них характерна большая зависимость между конформацией белковой молекулы и каталитической активностью. Их действие не подчиняется кинетике Михаэлиса-Ментен и описывается другими уравнениями, а графически зависимость скорости от концентрации субстрата имеет сигмоидный характер. Для аллостерических ферментов характерно проявление кооперативного эффекта, когда связывание одной молекулы субстрата усиливает способность присоединять следующую молекулу (активирующий кооперативный эффект), что видно на примере гемоглобина при связывании кислорода с одной субъединицей усиливается дальнейшее взаимодействие его с другими субъединицами. Тот факт, что аллостерический эффект проявляется часто на первой стадии процесса, объясняет выработанное в ходе эволюции экономное расходование веществ на последующих стадиях реакции. [c.35]

    Ранее отмечалось, что связывание кислорода атомом железа гема переводит последний из непланарной в планарную конфигурацию. Этот процесс запускает другие конформационные изменения, которые приводят к такому кооперативному взаимодействию между субъединицами гемоглобина, что, как только некоторое количество кислорода связывается, связывание последующих молекул облегчается. Следует теперь рассмотреть этот процесс в деталях. Предпоследним аминокислотным остатком как в а-, так и [c.558]

    Рнс. 5.8. Связывание кислорода гемом в гемоглобине. [c.170]

    Кооперативность связывания кислорода с гемоглобином была открыта очень давно, и, несмотря на это, важность данного явления недооценивали. Оно вновь привлекло к себе широкое внимание в 1965 г., когда Moho, Уаймен и Шанжё [33] описали его математически. Поскольку для многих случаев предложенная авторами модель является сильным упрощением, ниже мы остановимся на более общем подходе к этому вопросу, разработанном Кошландом [60—62]. [c.297]

    Детали механизма связывания кислорода гемоглобином сложны, но хорошо изучены. Будучи чрезвычайно важным с физиологической точки зрения, этот процесс служит прекрасной иллюстрацией аллостерических взаимодействий и регуляции. Характерные особенности связывания кислорода гемоглобином могут быть суммированы следующим образом  [c.170]

    Наконец, следует напомнить, что железо, связанное с порфи-рииом (гем), находится в ферросостоянии. Процесс связывания кислорода гемоглобином обратим, причем молекула кислорода и атом л<елеза находятся в стехиометрическом соотношении 1 1 и не происходит окисления Ре(П) до Ре(П1). Исследованию такого обратимого связывания молекулярного кислорода с Ре(П) в геме уделено очень большое внимание. Способность гема обратимо связывать кислород, проявляется при его включении в большую белковую структуру. Одиако если гем извлечь из белка и поместить в раствор при комнатной температуре, молекулярный кислород необратимо окисляет железо до феррисостояния Ре(П1). [c.361]

    В гемоглобине атом Ре(П) прикрыт (экранирован) в плоскости молекулы гема атомами макроцикла, а сверху и снизу — остатками имвдазола (Im) аминокислотного фрагмента гистидина (His), находящегося в составе молекулы белка. Один из имндазолов Irai образует донорно-акцепторную связь с железом, а второй Imi находится на значительном удалении от железа и не координирован с ним. Второй имидазол бережет шестое координационное место во внутренней координационной сфере железа (П) для молекулы О2, не допуская к нему никаких молекул, даже Н2О. Сам химизм обратимого связывания кислорода воздуха прост  [c.745]

    Если в случае дезоксигемо-глобина никакой заметной диссоциации тетрамера на субъединицы не наблюдается, то оксиге-моглобин слабо диссоциирует на ар-димеры (/С = 2-10- ). Вопросу связывания гемоглобинов с кислородом посвящено огромное [c.306]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]


    Это означает, что при значениях р(02), обычно характерных для плаценты, кислород будет переходить с НЬА на НЬР с выгодой для плода. Кооперативность связывания кислорода гемоглобином А выражена настолько явно, что, если молекула НЬА уже связала три молекулы кислорода, то вероятность связывания четвертой молекулы в 70 раз превосходит вероятность приобретения дезоксиге-моглобином одной молекулы кислорода. [c.558]

    Рассмотрим случай, когда константа Къв очень мала и Ва легко диссоциирует на мономеры. Тогда присоединение X приведет к диссоциации димера. Хорошо известным примером белка такого рода может служить гемоглобин миноговых, который представляет собой димер и после связывания кислорода диссоциирует на мономеры [64]. В этом случае уравнение (4-49) сводится к такому виду  [c.302]

    Что же общего между всеми гемоглобинами Прежде всего для них характерен один и тот же способ укладки полипептидных цепей вокруг идентичных для всех гемоглобинов (или очень сходных) гемогрупп. Однако наиболее поразительным является тот факт, что, несмотря на четко выраженное единообразие общей структуры всех гемоглобинов, имеется всего девять инвариантных аминокислотных остатков и один почти инвариантный. Эти десять остатков заключены на рис. 4-17 в прямоугольные рамки. Два глицина (или аланина) в положениях В-6 и Е-8 инвариантны потому, что тесный контакт между спиралями В и Е не позволяет находиться в этих положениях аминокислотным остаткам большего размера. Пролин С-2 обеспечивает изгиб молекулы. Четыре других инвариантных остатка непосредственно связаны с гемогруппой. Два из них. His Е-7 и His F-8, являются гем-связанными гистидинами. Девятый остаток. Туг НС-2, о котором уже шла речь в разд. 5.а, играет основную роль в кооперативном связывании кислорода. И только Lys Н-9 расположен с наружной стороны молекулы. Причины, по которым этот остаток инвариантен, не ясны [80]. [c.314]

    Было сделано необычайно интересное открытие, заключающееся в том, что координация гемового железа с гистидином, по всей видимости, лежит в основе кооперативности при связывании гемоглобина с кислородом [9, 10]. Радиус высокоспинового железа как в ферри-, так и в ферросостоянии столъ велик, что железо не помещается в центре порфиринового кольца и Смещается в сторону координационно связан- ной с ним имидазольной группы на расстояние, составляющее для Ре(II) 0,06 нм. Таким образом, в дезоксигемоглобине и железо, и имидазольная группа находятся от плоскости кольца дальше, чем в оксиге-моглобине. В последнем железо находится в центре порфиринового кольца, так как переход в низкоспиновое состояние сопровождается уменьшением ионного радиуса [9, И]. Изменение конформации белка, индуцированное небольшим смещением иона железа, уже было описано (гл. 4, разд. Д, 5). Однако истинная природа пускового механизма , приводящего к этим изменениям, пока в точности не ясна. С некоторым атриближением эти изменения можно рассматривать как чисто механи- [c.368]

    Механизм действия сиГнильной кислоты заклшается в необратимом ингибировании железосодержащих дыхательных ферментов. Вследствие сильного сродства цианид- аниона к иону цитохромоксидазы ак тивность этого фермента уменьшается, в результате чего прекращаются процессы клеточного окисления, управляемые атим ферментом, которые составляют свыше 90% все дыхательной деятельности клет-I ки Подобно гемоглобину, функцией цитохромоксидазы является об-- ратимое связывание кислорода и двуокиси углерода. [c.3]

    Биологическое значение маскировки а-аминогрупп недостаточно ясно возможно, она защищает белок от атаки аминопептидаз или способствует закреплению N-концевой части полипептида в аполярном окружении либо на молекуле рецептора, либо внутри самого белка, чтобы препятствовать его контакту с раствором. Это предположение не относится к метилированию а-аминогруппы, обнаруженному в рибосомных белках, выделенных из Es heri hia oli [135], поскольку метилирование не элиминирует заряд. Физиологическая роль ацетилирования а-аминогруппы совершенно ясна в случае некоторых гемоглобинов рыб такая модификация помогает сохранять способность к связыванию кислорода независимо от рН-среды, что предотвращает выделение избыточного кислорода в плавательный пузырь [136] (разд. 10.3). [c.72]

    Дана зависимость насыщения гемоглобина (НЬ) кислородом при pH 7,2 от концентрации свободного кислорода. Концентрации 0 в капиллярах легких (125 мкМ) н в капиллярах тканей, потребляющих (50 мкМ), зафиксированы в узких пределах. Кривая а в отсутствие дифосфоглицерата (ДФГ) гемоглобин насыщается О в легких, но не может доставлять его к тканям. Кривая б прн физиологическом уровне ДФГ (4.5 мМ. приблизительно 30% Оа. поглощенного легкими, высвобождается в тканях (стрелка 1). Кривые бив поскольку гемоглобин плода (кривая в) имеет более низкое сродство к ДФГ. чем материнский гемоглобин, освобожденный из материнской крови молекулярный кислород может захватываться гемоглобином плода (стрелка [[I). Кривая г высокая концентрация ДФГ (8 мМ) приводит к повышенному снабжению тканей кислородом (стре.жи I и [[). Кривая д при отсутствии кооператнвиостн между субъединицами гемоглобина от легких к тканям транспортировалось бы меньше Оз. При построении гипотетической кривой связывания (5) для комплекса НЬОз принята константа диссоциации 38 мкМ. [c.258]

    Кривая связывания кислорода мио-глобином представляет собой ректан-гулярную гиперболу, в то время как для гемоглобина она сигмоидальна ввиду аллостерического характера связывания (рис. 24.2.1). За счет этого достигается преимущество в биологической функции, поскольку присоединение и освобождение кислорода происходит в небольшом интервале (Ог). [c.557]

    Кооперативное связывание кислорода. Когда молекула гемоглобина диссоциирована на составляющие ее полипептидные цепи, поведение последних очень сходно с поведением миоглобина их кривые освобождения кислорода имеют гиперболиче- [c.171]

    Кривая связывания кислорода гемоглобином зависит от pH при данной величине р(Ог) сродство к кислороду уменьшается номере уменьшения pH (эффект Бора). Гликолиз представляет собой анаэробный процесс, приводящий к образованию молочной кислоты и диоксида углерода. Оба эти соединения имеют тенденцию к понижению pH и способствуют высвобождению кислорода из оксигемоглобина там, где в этом есть необходимость, В дезоксигемоглобине, напротив, содержатся немного более основные, чем у оксигемоглобина, группы (азот имидазола His-146 в р-цепях и His-122 в а-цепях, а также аминогрупп Val-1 в а-цепях), в силу чего дезоксигемоглобин связывает протон после высвобождения кислорода, что важно для обратного транспорта диоксида углерода к легким. Карбоангидраза катализирует образование бикарбоната в эритроцитах из диоксида углерода и воды, и ионы бикарбоната могут связываться с протонированными группами дезокси-гемоглобина. В легких дезоксигемоглобин перезаряжается кислородом, эффект Бора вызывает высвобождение бикарбоната, из которого под действием карбоангидразы образуется диоксид углерода, который затем выдыхается. Транспорт диоксида углерода дезоксигемоглобином приводит также к образованию производных карбаминовой кислоты с аминогруппами белка (схема (9) . Хотя оксигемоглобин также связывает диоксид углерода, у дезоксигемо-глобина эта способность выше ввиду большей доступности аминогрупп. [c.558]

    Из многообразия производных гемоглобина, представляющих несомненный интерес для врача, следует прежде всего указать на оксигемоглобин НЪО, — соединение молекулярного кислорода с гемоглобином. Клслород присоединяется к каждому гему молекулы гемоглобина при помощи координационных связей железа, причем присоединение одной молекулы кислорода к тетрамеру облегчает присоединение второй молекулы, затем третьей и т.д. Поэтому кривая насыщения гемоглобина кислородом имеет сигмоидную форму, свидетельствующую о кооперативности связывания кислорода. Эта кооперативность обеспечивает не только связывание максимального количества кислорода в легких, но и освобождение кислорода в периферических тканях этому способствует также наличие П и СО, в тканях с интенсивным обменом. В свою очередь кислород ускоряет высвобождение СО, и П в легочной ткани. Эта аллостерическая зависимость между присоединением П, О, и СО, получила название эффекта Бора. [c.84]


Смотреть страницы где упоминается термин Гемоглобин связывание кислорода: [c.262]    [c.363]    [c.369]    [c.369]    [c.371]    [c.371]    [c.578]    [c.442]    [c.306]    [c.316]    [c.222]    [c.559]    [c.171]    [c.172]   
Аминокислоты Пептиды Белки (1985) -- [ c.416 ]

Биологическая химия Изд.3 (1998) -- [ c.592 , c.593 , c.594 ]

Биохимия (2004) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин

Гемоглобин кислородом

Связывание

Связывание кислорода



© 2025 chem21.info Реклама на сайте