Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция различных метаболических путей

    Крупномасштабные изменения, влияющие на метаболизм всей клетки, могут быть достигнуты регуляцией ключевых ферментов. Например, особая схема регуляции по принципу обратной связи позволяет клетке переключаться с расщепления глюкозы на ее биосинтез, или глюконеогенез. Потребность в таком обращении метаболического пути бывает особенно острой как в периоды напряженных тренировок, когда необходимая для мышечного сокращения глюкоза синтезируется в клетках печени, так и во время голодания, при котором глюкоза для выживания организма должна образовываться из жирных кислот и аминокислот. Обычный распад глюкозы до пирувата в процессе гликолиза катализируется несколькими различными последовательно действующими ферментами. Большинство реакций, катализируемых этими ферментами, легко обращается, однако три из них (стадии 1, 3 и 9 ш. рис. 2-20) фактически необратимы. На самом деле процесс расщепления глюкозы [c.107]


    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]

    Процессы промежуточного обмена включают превращения компонентов пищи после их переваривания и всасывания. Промежуточный обмен не только описывает метаболические пути превращения индивидуальных молекул, он показывает также взаимосвязи между различными метаболическими путями исследование промежуточного обмена предполагает выяснение механизмов регуляции потоков метаболитов по различным путям. Метаболические пути разделяют на три категории (рис. 16.1). [c.165]

    Липиды выполняют многие структурные и метаболические функции, но основная их роль в обмене веществ и поддержании здоровья—это поставка значительной доли пищевых калорий ( 40% в западной диете). Особый интерес представляет регуляция этого энергетического потока и пути интеграции его с другими источниками энергии в тканях, поскольку с этими потоками связаны различные метаболические процессы. [c.287]

    Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Общая характеристика процессов передачи информации в клетке. Понятие о первичных и вторичных мессенджерах. Классификация, особенности структурно-функциональной организации мембранных белков-рецепторов. Характеристика аденилатциклазного и фосфо-инозитидного пути передачи сигнала в клетку. Роль ионов в осуществлении метаболических процессов с участием мембран. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространствен-но-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса), Экспериментальные исследования взаимодействия ферментов гликолиза с различными структурными компонентами клетки. Модели структуры гликолитического комплекса в скелетных мышцах и на внутренней поверхности мембран эритроцитов. Эстафетный механизм работы ферментов в клетке. Механизмы регулирования функциональной активности векторных ферментов биомембран. Пути нейрогуморальной регуляции функций клеток. [c.284]


    Регуляция различных метаболических путей [c.123]

    Резюмируя, можно сказать, что параметры сродства между ферментом и субстратом играют двоякую роль в регуляции химизма клетки. С одной стороны, они тонко видоизменяют активность различных метаболических путей, с другой — и это столь же важно — они эффективно ограничивают рост концентраций субстратов. В этой последней роли параметры фермент-субстратного сродства можно рассматривать как жизненно важное приспособление для того, чтобы 1) удерживать концентрации растворенных веществ в пределах растворяющей емкости клеточной воды и 2) предотвращать нежелательные и неконтролируемые побочные реакции. [c.120]

    Самый простой способ регуляции любого метаболического пути может быть основан на доступности субстрата, а также кофактора. Уменьшение концентрации субстрата приводит к снижению скорости потока веществ через данный метаболический путь. С другой стороны, увеличение концентрации субстрата будет стимулировать метаболический путь. Необходимо подчеркнуть, что, каковы бы ни были другие факторы регуляции ферментативной активности, доступность субстрата надо рассматривать как потенциальный механизм регуляции любого метаболического пути. В селекции продуцентов различных метаболитов генетические манипуляции, направленные на увеличение концентрации предшественников, нередко являются эффективным средством повышения выхода целевого продукта. [c.10]

    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]

    В этой книге основное внимание уделено сложным биохимическим процессам (например, синтезу белков, мышечному сокращению), в том числе и различным метаболическим путям. Метаболический путь—это совокупность реакций, ответственных за синтез сложных соединений из более простых и за распад соединения до конечных продуктов. Тот или иной сложный биохимический процесс или метаболический путь иногда проявляется на уровне целого организма. Примером такого рода может служить сокращение мышц. Мы знаем, что глюкоза является источником энергии для человека и других животных, а это означает, что в организме человека она должна распадаться (подвергаться метаболизму) с выделением энергии. Однако для того, чтобы получить полное представление о том, каким образом происходит метаболизм глюкозы в клетке—а мы такого представления (в частности, о механизме регуляции) пока не имеем,—необходимо провести исследования на других уровнях. На рис. 2.3 представлены различные типы наблюдений и анализа, которые позволяют полностью охватить весь биохимический процесс, такой, например, как распад глюкозы и высвобождение энергии (этот процесс известен как гликолиз). Эта схема в общих чертах применима ко всем основным биохимическим процессам, обсуждаемым в этой книге, и, таким образом, иллюстрирует общую стратегию изучения биохимических процессов об этом следует помнить, рассматривая любой биохимический процесс (гликолиз, окисление жирных кислот и т.д.). [c.18]


    На минимальной ростовой среде, содержащей углерод, водород, азот, кислород и серу, бактерии, например Е. соИ, синтезируют большое число различных метаболитов, включая все 20 аминокислот, необходимых для образования белков, и полный набор нуклеотидов для синтеза РНК и ДНК. В то же время у высших организмов, например у млекопитающих, некоторые важные ферменты отсутствуют, и вследствие этого многие соединения оказываются незаменимыми компонентами пищи. Можно полагать, что необычайная разветвленность метаболических путей у бактерий обусловлена необходимостью использования больших количеств углерода, азота и энергии для синтеза не только всех аминокислот и нуклеотидов, но также и ферментов, катализирующих их образование (только в биосинтезе аминокислот число их превышает 100). Неудивительно поэтому, что в середине 50-х годов,, после того как были раскрыты основные метаболические пути, свое главное внимание исследователи сосредоточили на механизмах регуляции метаболизма — на том, как именно обеспечивается наиболее эффективное использование доступных питательных веществ.. Первые сведения о механизмах регуляции активности ферментов были получены в ходе экспериментов, проводившихся главным образом с целью выяснения последовательности стадий в определенных метаболических путях. [c.9]

    Вся информация об отдельных метаболических реакциях, о промежуточных соединениях, образующихся на последовательных этапах различных метаболических путей, а также о механизме регуляции работы катализаторов получена главным образом с использованием очищенных препаратов ферментов. Высокоочищенные препараты ферментов необходимо иметь также и для того, чтобы получить надежные данные о кинетике, кофакторах, активных центрах, о структуре и механизме действия ферментов. [c.69]

    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Процессы регуляции рассмотрены в книге на различных уровнях. Регуляция метаболических путей показана на примере аллостерического ингибирования биосинтеза аминокислот и нуклеотидов в бактериях. Сложность процессов регуляции активности ферментов убедительно продемонстрирована на примере глу-таминсинтетазы из Е. oli. Анализируя структуру этого фермента и факторы его регуляции, автор показывает, что активность глутаминсинтетазы зависит от суммарного действия многих эффектов, а число возможных модифицированных форм составляет 382  [c.6]

    Перечислите и опишите четыре различных механизма регуляции метаболического пути, указав специфические ферменты, реагенты и кофакторы. Примечание речь должна идти е о четырех раз- [c.77]

    Биохимические изменения, которые мы будем описывать, большей частью адаптивны на уровне основных метаболических функций и поэтому макроскопически не проявляются. Поясним это на примере явных макроскопических признаков двух видов рыб, один из которых обитает в Южном Ледовитом океане, а другой — в теплых тропических морях. По своим поведенческим, анатомическим и физиологическим особенностям оба вида могут показаться очень сходными. Они вполне сравнимы по гидродинамическим свойствам, по способности плавать, по таким функциям, как обмен веществ, транспорт газов, осморегуляция и т. д. Выше биохимического уровня мы можем не найти особых оснований рассматривать один вид как адаптированный к полярным условиям, а другой — к условиям тропиков. И только тогда, когда мы начинаем вскрывать биохимические механизмы обоих видов, мы обнаруживаем важное обстоятельство способность этих видов осуществлять одни и те же основные функции с почти одинаковой интенсивностью в крайне различных условиях обитания зависит от глубоких биохимических различий— каждый вид проявляет на этом уровне специфическую адаптацию к соответствующей среде. Именно биохимическая адаптация к различным условиям среды и позволяет обоим видам сохранять столь большое внешнее сходство. Таким образом, регуляция на химическом уровне, которую можно выявить лишь косвенным путем, способна устранить необходимость явных различий на более высоких уровнях биологической организации. [c.12]

    Совершенно очевидно, что при изучении метаболических путей с помощью радиоактивной метки необходимо соблюдать определенные условия опыта и учитывать возможные ограничения этого метода. В процессе равновесно и непрерывно действующих метаболических превращений концентрации и количества различных биохимических промежуточных соединений достигают постоянных величин. Пул определенного метаболита достигает постоянного размера, когда между скоростью образования и убыли этого метаболита устанавливается равновесие, т. е. когда в системе устанавливается стационарное состояние. Так осуществляется регуляция метаболических путей у микробов, когда деление клеток протекает с постоянной скоростью при неизменяющейся внешней среде. В этих условиях радиоактивность начнет включаться в первый метаболит, удельная радиоактивность этого метаболита будет повышаться, пока не сравняется с удельной радиоактивностью источника изотопа, вводимого в клетки. Тем временем изотоп начнет включаться в следующий метаболит, и там быстро установится та же удельная радиоактивность, хотя количество включенной радиоактивности, как и в первом случае, будет зависеть от величины пула этого метаболита. Таким образом, определяя радиоактивность, можно выяснить последовательность реакций, но только в том случае, если равновесные концентрации метаболитов остаются постоянными. Ясно также, что в ходе данной последовательности реакций может происходить образование какого-то промежуточного продукта, кинетика образования и распада которого будут таковыми, что его пул будет очень незначительным. Тогда радиоактивность пула может оказаться настолько незначительной, что это соединение будет невозможно идентифицировать на хроматограмме. С другой стороны, не исключено, что меченое соединение, не являющееся членом рассматриваемой последовательности реакций, будет быстро образовываться из какого-нибудь промежуточного соединения. Так, щавелевоуксусная кислота может быть настоящим промежуточным соединением, а при радиоавтографии все-таки будет обнаруживаться аспарагиновая кислота. Этот может произойти в результате быстрого обмена углеродными скелетами между щавелевоуксусной и аспарагиновой кислотами, если пул последней будет значительно выше. Данные о существовании определенного метаболического процесса, полученные с помощью изо- [c.37]

    Итак, мы еще не доказали, что зависимость таких различных оперонов от белка БАК неизбежно отражает общий способ регуляции на уровне индивидуальных взаимодействий типа белок-белок или белок—ДНК. Однако такой тип регуляции достигает одной и той же цели выключения альтернативных метаболических путей, если они становятся необязательными при снабжении клетки нужными количествами глюкозы. Снова это свидетельствует о том, что координированный контроль положительного или отрицательного типов может распространяться на ряд локусов, локализованных в разных участках, благодаря наличию повторов нуклеотидных последовательностей в сайтах, связывающих регуляторный белок. [c.201]

    Тысячи и тысячи различных биохимических реакций, одновременно осуществляемых клеткой, тесно скоординированы между собой. Разнообразные механизмы контроля регулируют активность клеточных ферментов при изменении существующих в клетке условий. Наиболее общая форма регуляции - это легко обратимое ингибирование по принципу обратной связи, когда первый фермент метаболического пути ингибируется конечным продуктом этого пути Более длительная форма регуляции включает в себя химическую модификацию одного фермента под действием другого, что часто происходит в результате фосфорилирования Комбинации регуляторных механизмов могут вызывать сильные и длительные изменения в метаболизме клетки. Не все клеточные реакции происходят в одних и тех же внутриклеточных компартментах, и пространственное разграничение клетки внутренними мембранами позволяет органеллам осуществлять специализацию своих биохимических функций. [c.111]

    Для того чтобы метаболические пути могли функционировать согласованно и удовлетворять потребности индивидуальных клеток, органов или организма в целом, они должны быть регулируемыми. Регуляция метаболических путей, снабжающих организм топливными молекулами, например углеводами, необходима, поскольку они должны поступать постоянно при различных условиях и при возникновении патологических состояний. Этот тип регуляции метаболизма направлен на поддержание, как принято говорить, энергетического гомеостаза . [c.212]

    Даже в простейшей бактериальной клетке может протекать более тысячи взаимозависимых реакций. Очевидно, что эта сложная система должна строго регулироваться. Более того, регуляция обмена веществ должна быть гибкой в силу непостоянства условий внешней среды. Исследование широкого круга организмов показало, что существует много различных механизмов регуляции метаболизма. Следует подчеркнуть, что хотя центральные метаболические пути в настоящее время почти полностью установлены, изучение механизмов их регуляции до сих пор находится в зачаточном состоянии. Немногие вопросы современной биохимии представляют собой настолько важную и захватывающую проблему. [c.19]

    Очевидно, что у рассмотренных выше бактерий регуляция биосинтеза L-лизина, L-метионина, L-треонина к L-изолейцина осуществляется с помощью механизмов, отличных от тех, которые функционируют у Е. соИ К 12. Важное общее правило состоит в том, что хотя стадии метаболических путей у разных организмов неизменны, регуляция этих путей может значительно варьировать не только от организма к организму, но у некоторых млекопитающих от одного типа клеток к другому. Аспартаткиназная система иллюстрирует различные регуляторные механизмы, которые несомненно возникли намного позже, чем сами метаболические пути. [c.24]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Дифференциальное ингибирование множества ферментов используется для регуляции многочисленных метаболических путей у микроорганизмов. У Е. соИ конденсация фосфоенолпирувата и эритрозо-4-фосфата катализируется тремя различными ферментами. Один из них ингибируется фенилаланином, другой-тирозином и третий-триП тофаном. Кроме того, существуют две различные мутазы, превращающие хоризмат в префенат. Одна из них ингибируется фенилаланином, другая-тирозином. [c.245]

    Каким образом координируется сложная сеть метаболических реакций, чтобы она удовлетворяла потребностям целого организма В этой главе мы познакомимся с некоторыми основополагающими принципами интеграции метаболизма у млекопитающих. Мы начнем с того, что вкратце подытожим стратегию метаболизма и основные механизмы его регуляции. Затем взаимосвязь различных метаболических путей будет рассмотрена с помощью анализа потока вещества на трех важнейших перекрестках глюкозо-6-фосфат, пируват и аце-тил-СоА. После этого будут обсуждены различия в картине метаболизма в мозге, мышцах, жировой ткани и печени. Далее мы перейдем к основным гормональным регуляторам энергетического метаболизма-инсулину, глюкагону, адреналину и норадре-налину. Вслед за этим мы обратимся к самому важному аспекту метаболизма — регуляции концентрации глюкозы в крови. В последней части главы рассматривается замечательное явление приспособления метаболизма к продолжительному голоданию. [c.280]

    Многообразие обменных процессов, необходимых для синтеза различных веществ и роста клеток, требует их хорошей координации. Каждый метаболический путь включает несколько ферментативных реакций. Процессы метаболизма обеспечивают получение энергии в биологически доступной форме, синтез простых структурных компонентов и сложных макромолекул, а также редупликацию клетки. Необходимость вьщержать конкуренцию с другими живыми существами привела к развитию механизмов, которые, с одной стороны, дают возможность приспосабливаться к меняющимся условиям внешней среды, а с другой-оптимально согласовывают между собой различные метаболические процессы. Объектами такой оптимизации могут быть ферментные белки, их синтез и функционирование. Регуляция клеточного метаболизма происходит на двух уровнях-на уровне синтеза ферментов и на уровне изменения их активности. [c.472]

    Концентрации различных малых молекул в клетке довольно устойчивы, что достигается регуляцией по принципу обратной связи. Регуляторные молекулы такого типа корректируют поток метаболитов по определенному метаболическому пути посредством временного увеличения или уменьшения активности ключевых ферментов. Например, первый фермент в той или иной последовательности реакций обычно ингибируется конечным продуктом этого метаболического пути по принципу отрицательной обратной связи таким образом, если накапливается слишком много конечного продукта, дальнейшее поступление предшественников в данный метаболический путь автоматически ингибируется (рис. 2-36). В случае ветвления или пересечения метаболических путей, что происходит довольно часто, имеется, как правило, несколько точек, в которых осуществляется контроль различными конечными продуктами. Насколько важны такие процессы регуляции по принципу обратной связи, видно из рис. 2-37. где показана регуляпия ферментативной активности в последовательностях реакций, ведущих к синтезу аминокислот. [c.106]

    В разд. 18.1 рассматриваются различные типы клеточных препаратов, обычно используемых в энзимологических исследованиях, после чего следует описание того, как измеряется активность ферментов вообще и ферментов шести основных классов в частности (разд. 18.2). С помощью ферментов можно изучать различные процессы регуляции, связанные с изменениями их активности в разд. 18.3 рассматриваются эти процессы в целом, а также два основных типа регуляции — аллосте-рический и путем ковалентной модификации. Присутствие и отсутствие тех или иных ферментов у определенной бактерии зависит, разумеется, от ее генотипа. Но даже если у бактерии имеются определенные гены, их транскрипция и трансляция с образованием соответствующих молекул фермента могут и не происходить. Здесь следует учитывать факторы, участвующие в регуляции генетической экспрессии и, следовательно, синтеза ферментов, рассмотренные в разд. 18.4. И наконец, поскольку ферментативные реакции редко протекают в бактериальных клетках как изолированные процессы и чаще всего являются частью сложной сети метаболических путей и циклов с взаимозависимыми этапами, мы сочли нужным рассмотреть здесь некоторые общие и специальные методы анализа путей метаболизма (разд. 18.5). [c.375]

    Следует отметить, что объединение генов, ответственных за образование ферментов одного метаболического пути, в единый оперон не является непременным условием для регуляции их с помощью репрессии или индукции. У Е. oli гены, кодирующие ферменты биосинтеза аргинина, находятся в различных участках хромосомы, но все они контролируются одним и тем же регуляторным геном, образуя регулон. Другой пример регулона — это совокупность генов, кодирующих около двух десятков белков и ферментов, которые индуцируются в клетке в ответ на воздействия, повреждающие ДНК, — так называемый SOS-регулон. Все они регулируются одним репрессором — продуктом гена lex А. [c.19]

    Таким образом, изменяя регуляцию индуцибельных и репрессибельных оперонов, существует возможность повышать продукционную активность определенных промышленных штаммов-продуцентов. Уместно отметить, что структурные гены одного метаболического пути не всегда объединены в единый оперон (наподобие лактозному), однако это не мешает их регуляции с помощью индукции или репрессии. Так, например, гены Е.соИ, детерминирующие структуру ферментов, обеспечивающих биосинтез аргинина, располагаются в различных областях хромосомы, но все контролируются одним и тем же геном-регулятором. Такая система образует регулон. Другим показательным примером является 808-регулон, гены которого детерминируют структуру более десятка различных белков и ферментов, участвующих в репарации повреждений ДНК клетки. Все эти структурные гены регулируются одним репрессором - продуктом гена 1ехА. Опероны и регулоны, контролирующие взаимосвязанные физиологические функции обнаружены у всех генетически изученных видов бактерий. [c.26]

    Биосинтез и расщепление почти всегда осуществляются различными путями. Например, путь синтеза жирных кислот отличается от пути их расщепления. Точно так же гликоген синтезируется и расщепляется в результате различных последовательностей реакций. Благодаря такому разделению пути синтеза и расщепления постоянно оказываются термодинамически выгодными. Чтобы какой-либо путь биосинтеза был экзергоническим, он должен быть сопряжен с гидролизом достаточного количества молекул АТР. Например, на превращение пирувата в глюкозу в процессе глюконеогенеза затрачивается на четыре высокоэнергетические связи Р больше, чем образуется в процессе превращения глюкозы в пируват в ходе гликолиза. Эти четыре дополнительные связи Р обусловливают экзерго-ничность глюконеогенеза при любых существующих в клетке условиях. Принципиально важная особенность метаболических путей состоит в том, что их скорость определяется не законом действующих масс, а активностью ключевых ферментов. Разделение путей биосинтеза и расщепления имеет особенно важное значение для эффективной регуляции метаболизма. [c.282]

    Возможно, самые трудные проблемы в области изучения каротиноидов связаны с их биохимией. Главные пути биосинтеза и последовательности реакций >же хорошо известны, и предстоит определить лишь стереохимию и механизм некоторы из этих реакций. Однако особого внимания требуют исследования на ферментном уровне, не исключено, что ферменты организованы в связанные с мембранами комплексы, и это может создавать значительные методические трудности. До тех пор пока не будет достигнут прогресс в этой области, невозможно выяснить детали механизмов регуляции и контроля биосинтеза каротиноидов (особенно фоторегуляции). Что касается вопроса о происхождении каротиноидов у животных, то здесь не исключены сюрпризы старая идея о том, что животные получают каротиноиды только с пищей, сейчас кажется несостоятельной. Животные способны модифицировать попавшие с пищей каротиноиды различными путями, в том числе с помощью стереохимических превращений. Исследование последних очень перспективно, несмотря на то что метаболические превращения обычно происходят медленно и в связи с этим их трудно обнаружить [c.88]

    Все это показывает, как широко используется ультрацентрифугирование при изучении нуклеиновых кислот и биосинтеза белка. Ультрацентрифугирование незаменимо также при все более расширяющемся изучении смежных проблем — в частности при изучении механизмов регуляции ферментативных реакций. Метаболические потребности клетки удовлетворяются, как известно, благодаря тонкой согласованности скоростей различных биохимических последовательностей. Такая согласованность возможна благодаря чувствительности аллостерических ферментов к изменениям концентраций отдельных метаболитов, что в свою очередь зависит от конформационных изменений, вызываемых соответствующим метаболитом и, очевидно, передающихся путем взаимодействия субъединиц ферментного белка. Успехи, достигнутые в изучении свойств аллостериче-ского фермента — аспартат-карбамоилтрансферазы, хорошо иллюстрируют большое значение ультрацентрифугирования — особенно когда оно используется в сочетании с другими методами анализа. Так, Герхарт и Шахман [5] показали, что этот фермент, представляющий собой глобулярный белок с молекулярной массой около 3-10 , после обработки соединениями ртути распадается на субъединицы двух типов. Каталитической активностью обладают лишь субъединицы одного типа, в субъединицах же другого типа, не обладающих каталитической активностью, находится центр по которому происходит присоединение цитидинтрифосфата. С этой регуляторной субъединицей связывается 5-бромцитидин-трифосфат, о чем свидетельствует соответствующая картина седиментации. Позже Вебер [6] определил аминокислотный состав и Ы-концевые остатки субъединиц обоих типов и установил, что одна молекула фермента содержит четыре регуляторных и четыре каталитических субъединицы. [c.9]

    Ряд метаболических реакций протекает сходным образом с разными группами нуклеотидов. С другой стороны, в отдельных реакциях проявляется специфичность нуклеотидов. Так, например, в превращениях глюкозы особенно велико значение УДФ-производных в превращениях маннозы — ГДФ-производ-ных УДФ-сахара принимают весьма большое участие в синтезах гликозидов, тогда как ГДФ- и ТДФ-производные участвуют в синтезах дезоксисахаров. Использование в НДФС различных оснований, связанное со специфичностью ферментов, разделяет пути биосинтеза различных углеводов и целесообразно, в частности, для регуляции обмена по принципу обратного торможения отдельных реакций [28]. [c.191]


Смотреть страницы где упоминается термин Регуляция различных метаболических путей: [c.100]    [c.99]    [c.467]    [c.75]    [c.468]    [c.180]    [c.92]    [c.160]   
Смотреть главы в:

Микробиология Издание 4 -> Регуляция различных метаболических путей

Микробиология Изд.2 -> Регуляция различных метаболических путей




ПОИСК





Смотрите так же термины и статьи:

Метаболические пути

Метаболические яды

Регуляция



© 2025 chem21.info Реклама на сайте