Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фрикционно-контактная усталость

    В процессе трения, как известно, важна специфика образования и разрушения фрикционных связей. Образование фрикционных связей характерно в основном для сухого трения, однако в той или иной мере оно реализуется и при гранич.ной смазке в условиях неоднородности микрорельефа поверхности и неравномерности распределения нагрузки на фактической площади контакта. Согласно теории И. В. Крагельского [255], различают пять видов фрикционных связей упругое оттеснение (деформация) материала, пластическое оттеснение (деформация) материала, микрорезание, адгезионное нарушение фрикционных связей, когезионный отрыв. Упругое оттеснение материала наблюдается в случае, когда действующая нагрузка не приводит к возникновению в зоне контакта напряжений, превышающих предел текучести. В этом случае такой важный трибологический параметр, как износ, возможен лишь в результате фрикционной усталости. Пластическое оттеснение происходит при контактных напряжениях, превышающих предел текучести (при этом износ определяется малоцикловой фрикционной усталостью). Мпкрорезание наблюдается при - напряжениях или деформациях, достигающих разрушающих значений (разрушение происходит при первых же актах взаимодействия). Адгезионное нарушение фрикционной связи непоередственно не приводит к разрушениям, но вносит определенный вклад в величину напряжений, действующих на контакт. Когезионный отрыв возникает в случае, если прочность фрикционной связи выше прочности нижележащего материала. [c.240]


    Усталостная прочность металла существенно зависит от состава и свойств смазочной среды, причем идентичность процессов образования и развития трещин при контактно-фрикционной и объемной усталости должна обусловливать близкое влияние состава среды на усталостную долговечность в обоих этих случаях. [c.27]

    Смазочные св-ва характеризуют способность масел уменьшать трение, снижать или предотвращать износ, заедание и задир пов-стей трения, ослаблять либо замедлять контактную усталость взаимодействующих металлич. пов-стей, обеспечивать более прочный контакт смыкающихся пов-стей во фрикционных механизмах и др. [c.367]

    Усталостное изнашивание происходит три многократном фрикционном деформировании в результате утомления материала в поверхностных слоях. В этих слоях образуются микротрещины, развитие которых приводит к микровыкрашиванию материала. Процессы фрикционно-контактной усталости развиваются в зоне, [c.116]

    Для ряда образцов было зафиксировано образование питтингов на поверхностях трения. Характер процессов, протекающих в контакте в динамических условиях, и механизм образования питтингов может быть различным. Как известно, реальная поверхность металла характеризуется повышенной концентрацией дефектов строения - вакансий, дислокаций и т.п. При интенсивном деформировании поверхностных слоев металла при трении дефекты служат концентраторами напряжений и являются очагами зарождения микротрещин. В результате многократного циклического деформирования происходит развитие микротрещин, их смыкание, отслаивание частиц износа и образование пит-тйнгов вследствие контактной или фрикционной усталости металла. Большую роль при этом играет, как указывалось выше, адсорбционное понижение прочности поверхностных слоев металла вследствие эффекта Ребиндера, химическая коррозия, вь1зываемая серосодержащими лрисадками, а также электрохимическая питтинговая коррозия, возникающая в местах скопления поверхностных дефектов в результате пробоя пассивирующей поверхности пленки окисла. О механизме образования питтингов можно было в какой-то степени судить по их виду. Питтинги усталостного происхождения имели неправильную форму, неровные края, от которых могли отходить поверхностные трещины. Такие питтинги наблюдались для эфира 2-этилгексанола и фосфорной кислоты. Серосодержащие присадки ОТП и Б-1 вызывали появление большого количества мелких питтингов, В присутствии хлорсодержащих присадок хлорэф-40 и совол возни- [c.43]

    Зависимости предела фрикционно-контакт-лон усталости от контактного давления при различных температурах (у=0,01 м/с)  [c.90]


    В последнем случае процесс локализуется в тонком поверхностном слое, а не во всем объеме материала и значительно осложняется влиянием окружающей среды. Поэтому правильнее сопоставлять износостойкость материала с фрикционно-контактной усталостью, т. е. с усталостью материала при многократном деформировании его поверхностного слоя неровностями твердого контртела. Исследования фрикционно-контактной усталости, проведенные с помощью приборов, в которых жесткий сферический индентор, имитирующий выстун шероховатой поверхности, многократно деформировал поверхность резины [7, с. 9 108], показали, что объемная и контактная усталость подчиняются аналогичным закономерностям. Значения коэффициентов динамической выносливости резин в обоих случаях близки. Применимость формулы (1.7) проверена для контактной усталости до амплитудных значений напряжений, близких к разрывным. Сопоставление кривых объемной и фрикционно-контактной усталости дает основание предполагать, что разрушающим в последнем случае является напряжение растяжения поверхностного слоя, вызванное силой трения. Стойкость резины к повторным нагружениям оказывает влияние на реализацию других видов износа. Показано [7, с. 9 14 56], что рисунок истирания появляется не сразу, а только после определенного числа циклов повторных деформаций. С улучшением усталостных свойств реализация износа посредством скатывания начинается позднее, что приводит к повышению износостойкости резин. [c.28]


Смотреть страницы где упоминается термин Фрикционно-контактная усталость: [c.90]    [c.39]    [c.27]   
Истирание резин (1975) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Усталость



© 2025 chem21.info Реклама на сайте