Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты жирные смазочные свойства

    Для обеспечения надлежащей смазки машин, работающих в различных эксплуатационных и климатических условиях, создан широкий ассортимент смазочных масел. Из этого ассортимента для циркуляционных систем смазки применяются только масла высокой очистки, обладающие высокой химической и термической стабильностью и содержащие минимальное количество смолистых веществ, кокса, золы и механических примесей. Однако хорошо очищенные минеральные масла обладают пониженной смазочной способностью по сравнению с неочищенными маслами, так как в процессе очистки из них удаляются активные углеводороды, присутствие которых в маслах значительно повышает их смазочную способность, являющуюся весьма ценным свойством всех смазочных масел и в особенности масел, применяемых для смазки тяжелонагруженных и передающих ударные нагрузки механизмов. По мере возрастания удельных давлений и уменьшения скоростей скольжения для улучшения смазки и приближения ее к условиям жидкостного трения обычно приходится применять смазочные масла более высокой вязкости и более высокой липкости с целью увеличения толщины смазочного слоя, разделяющего поверхности трения и препятствующего возникновению сухого трения, ускоряющего износ. Для повышения смазочной способности и химической стабильности масел, применяемых в циркуляционных системах, служат специальные присадки к маслам. В качестве присадок используются жирные кислоты, жиры, а также синтетические вещества — продукты соединения жиров и масел с серой. Так как присутствие в масле воды понижает его грузоподъемность и ускоряет коррозию трущихся поверхностей, то смазочные масла должны обладать способностью быстро отделяться от попадающей в них воды и не давать с ней стойких эмульсий. С этой точки зрения очищенные минеральные масла обладают несомненным преимуществом перед неочищенными. На выбор смазочного материала оказывают влияние условия работы трущихся пар скорость, температура, нагрузка, возможность загрязнения, а также способ смазки. Вследствие этого для смазки оборудования современных металлургических цехов обычно приходится применять несколько сортов смазочных масел, заливаемых в резервуары циркуляционных систем и в картеры редукторов (при картерной смазке). [c.23]


    Ряд полимерных соединений, используемых в качестве присадок, улучшающих вязкостно-температурные свойства, одновременно улучшают и депрессорные свойства нефтяных масел среди них ведущее положение сейчас занимают сополимеры самого доступного нефтехимического сырья —этилена. Так, в качестве депрессорной присадки применяют сополимер этилена (58—88 %) и винилового эфира жирных кислот С1—а (12—42%), который добавляется в количестве 0,01—0,5 % к остаточным смазочным маслам из парафинистых нефтей [пат. США 3947368]. [c.148]

    Пластичные смазки являются распространенным видом смазочных материалов в большинстве случаев они состоят пз трех компонентов — дисперсионной среды (жидкой основы), дисперсной фазы (твердого загустителя) и добавок (модификаторов структуры, присадок и наполнителей). В качестве дисперсионной среды смазок используют нефтяные, синтетические и иногда растительные масла. Загустителями чаще всего являются металлические мыла (соли высокомолекулярных жирных кислот), твердые нефтяные углеводороды (церезины, петролатумы) и некоторые продукты неорганического (бентонит, силикагель) и органического (пигменты, производные мочевины) происхождения. Загустители образуют в дисперсионной среде стабильную структурированную систему, их содержание не превышает 20—22% (обычно 8—12%). Для регулировапия структуры и улучшения функциональных свойств в смазки вводят добавки (поверхностно-активные вещества и твердые порошкообразные продукты). [c.253]

    Более эффективными соединениями с полисульфидными мостиками, в которых атомы серы представлены в лабильной (т. е. слабосвязанной в молекуле) форме, являются такие соединения, как осерненные полиизобутен, полипропилен или полистирол и осерненные жирные кислоты, одновременно улучшающие смазочные свойства масел. Например, осерненное спермацетовое масло уже давно применяют в качестве противозадирной присадки в относительно малых концентрациях. Оно улучшает несущую [c.215]

    Природные жиры и жирные кислоты были первыми веществами, примененными для улучшения смазочных свойств нефтяных масел. Еще в недалеком прошлом широко использовалось компаундирование минеральных масел с растительными и животными жирами для смазки тихоходных и высоконагруженных механизмов, для червячных передач тяжелых сепараторов и других машин [1]. В СССР для этих целей применялись смеси минерального масла соответствующей вязкости с сурепным или горчичным маслом, предварительно окисленным путем продувания через него воздуха при повышенной температуре для улучшения растворимости его в минеральном масле. В Англии и во Франции использование растительных и животных жиров в смеси с минеральными маслами широко практикуется и сейчас. [c.517]


    Второй ингредиент искусственной пятнообразующей смеси — это масло. Следует отметить, что известные нам рецепты этих, смесей отличаются друг от друга главным образом в отношении вида и количества именно этого ингредиента. Вещества, из которых состоит этот масляный компонент, могут быть насыщенные минеральные смазочные масла, ненасыщенные растительные масла, насыщенные или гидрированные растительные масла, л<ивот-ные жиры, жирные кислоты, жирные спирта, ланолин и т. д. или же смеси из двух или нескольких видов этих масел. Состав масла, содержащегося в естественном пятне, определенный Броуном и государственным бюро стандартов, приведен выше в табл. 2 и 7. Эти два определения почти совпадают в отношении количества свободной жирной кислоты, содержаи 1ейся в естественных пятнах. Государственное бюро стандартов определило таковое в 32,3%, а Броун в 31,4%. Тем не менее свободные жирные кислоты никогда не считались подходящими ингредиентами искусственных пят-нообразователей, так как они под действием моющего средства (особенно синтетического) склонны омыляться. Авторы настоящего труда подвергают сомнению убедительность этой причины, якобы оправдывающей исключение жирных кислот из состава искусственных пятнообразующих смесей. Основной аргумент, выдвигаемый в пользу отказа от этих кислот, заключается в том, что жирные кислоты препятствуют определению свойств исследуемых моющих средств. [c.41]

    Опытами на машине трения, проведенными в последние годы Ф. Боуденом и его сотрудниками, показано [И, 12], что различные соединения на разных металлах дают или физически адсорбированную пленку или пленку, являющуюся результатом хемосорб-ционного процесса. Например, на инертных металлах (платина, серебро, никель, хром) и на стекле смазочные свойства жирных кислот ниже, чем парафиновых углеводородов. Наоборот, на активных поверхностях (медь, кадмий, цинк, магний, железо, алюминий) жирные кислоты дают значительно меньшее трение. Таким образом, металлы, наиболее подверженные химическому воздействию в присутствии жирных кислот, смазываются наиболее эффективно. [c.150]

    Граничные слои в направлении, перпендикулярном к поверхности твердого тела, обладают весьма большой прочностью и способны выдерживать большие удельные нагрузки (до 1000 кГ/см ). Вместе с тем в тангенциальных направлениях требуются очень незначительные усилия для сдвига одного слоя относительно другого. Эта особенность граничных слоев придает им свойства хороших смазочных пленок. При повышении температуры и достижении критического ее значения квазикристаллическая структура граничного слоя нарушается, происходит как бы расплавление пленки. Молекулы теряют способность к адсорбции, происходит их дезориентация. Температура разрушения граничного слоя жирных кислот на химически неактивных металлах равна 40—80° С, а на химически активных — 90—150° С. [c.60]

    Сложные эфиры пентаэритрита и ашфатических карбоновых кислот нашли широкое применение в качестве синтетических смазочных масел, характеризующихся низкими температурой застывания и испаряемостью, хорошими смазочными свойствами и высокой стабильностью. В СССР до начала XXI века на основе пентаэритрита и фракции синтетических жирных кислот s —Сд вырабатывалось синтетическое базовое сложноэфирное масло Эфир-2" со следующими показателями  [c.68]

    Патент США, № 4053427, 1977 г. Описываются добавки к смазочным маслам, представляющие сульфированные смеси моноэфиров жирных кислот и олефинов, которые обладают хорошими смазочными свойствами при повышенных давлениях, стабильностью и коррозионно-неактивны по отношению к меди. [c.160]

    Входящие в состав растительных и животных масел спирты, сложные эфиры и свободные жирные кислоты образуют прочную смазочную пленку на поверхности трения. Реологические свойства масел определяются молекулярной массой и степенью нена- [c.221]

    Свойства консистентной смазки зависят от степени дисперсности загустителя. Увеличение степени дисперсности загустителя обычно приводит к повышению стабильности дисперсии. Введение пептизаторов облегчает диспергирование загустителя в масле и способствует образованию более стабильных дисперсий. Диспергированию мыл в смазочных маслах способствуют, например, свободные жирные кислоты, спирты и многие другие поверхностно-активные вещества, в том числе и содержащиеся в нефтяных маслах смолы. К числу пептизаторов консистентных смазок, загущенных мылами щелочных и щелочноземельных металлов, некоторые исследователи относят и воду. Однако такой же стабилизирующий эффект как и вода, дают соли низкомолекулярных кислот, которые пептизирующими свойствами не обладают. [c.26]

    Соединения хлора, серы и фосфора, так же как и жирные кислоты, улучшают граничные смазочные свойства масла вследствие образования продуктов химической реакции на поверхности скольжения. [c.14]


    Свободные жирные кислоты содержатся в растительных маслах и жирах. В минеральных маслах находятся главным образом нафтеновые кислоты свободные жирные кислоты в заметных количествах бывают только в том случае, если они входят в присадку, добавляемую к маслу для улучшения его смазочных свойств. [c.43]

    Чтобы усилить смазочные свойства масел,к ним добавляют присадки полярноактивных веществ. К их числу относятся жирные кислоты, их глицериды, осерненные и хлорированные масла и жиры. Кларк с сотрудниками исследовали рентгеноструктуру масляных пленок, образованных минеральными маслами с примесью 1 /о эфиров жирных кислот и хлорпроизводных жирных кислот и их эфидов. Эти авторы установили пластинчатую многослойную структуру масляной пленки с толщиной ориентированного слоя до 0,91а. В зависимости от природы полярных молекул было обнаружено, что каждая элементарная пластинка слоя состоит из одного или двух слоев ориентированных полярных молекул (фиг. 14), На этой фигуре схема А относится к эфирам высокомолекулярных жирных кислот, [c.238]

    В качестве присадок, улучшающих смазочные свойства, практическое применение получили высокомолекулярные жирные кислоты и их эфиры, а также сернистые, хлористые и фосфористые соединения и их производные. [c.64]

    Дистиллированные жирные кислоты хлопкового масла оказались эффективными в качестве омыляемого сырья при производстве кальциевых пластичных смазок типа солидола. На основе хлопкового и рапсового масел (в смеси с регенерированным нефтяным) получены литиевые смазки общего назначения, не уступающие аналогичным товарным продуктам на основе минерального сырья. Использование для производства смазочных материалов жиров как продуктов чисто биосферного происхождения позволяет улучшить важнейшее экологическое свойство масел и смазок на нефтяной основе — биоразлагаемость, повысив ее с 30 до -50%. [c.338]

    Представления об адсорбционной природе граничной масляной пленки дают ключ для понимания механизма действия присадок, улучшающих смазочные свойства масел. Это справедливо по крайней мере для таких веществ, как жирные кислоты, глицериды и другие эфиры, сульфокислоты и их соли и т. д. [c.179]

    В химической структуре и функциональном действии присадок, обеспечивающих чистоту цилиндро-поршневой группы двигателя, свершилась эволюция от универсальных, которыми были сравнительно низкомолекулярные (С15 —Сзо) ПАВ с выраженной моющей функцией (аминоамиды жирных кислот и алифатических аминов), до высокомолекулярных (М. м. углеводородного радикала > 1000) с дифференцированным функциональным действием диспергирующим — для обеспечения чистоты карбюратора и впускного клапана (полимерные амины, а также сукцинимиды), моюще-диспергирующим — для предотвращения осадков в камере сгорания и забивания инжектора (оксиэтилированные амины, карбаматы, а также сложные эфиры). В составах современных бензинов используются присадки, снижающие содержание токсичных компонентов (RH, NO , SO и т. п.) в выхлопных газах. В значительной мере этому способствует применение антидетонаторов (как, например, ферроцен — циклопентадиенилкарбонил марганца) и моющих присадок на основе аминов, а также солей карбоновых кислот и сульфокислот, фенолятов щелочноземельных металлов, их комплексов с электронодонорными соединениями, перекисей, сложных эфиров, а также углеводородных полимеров. Тенденция уменьшения СО2 в атмосфере, в том числе и за счет топлив, а также серы в топливах приводит к ухудшению смазочных свойств, поэтому важное значение имеют противоизносные присадки. [c.186]

    Опытами Ф. Боудена и Д. Тейбора показано, что смазочные свойства жирных кислот, например, зависят от природы металла. Так, на поверхности инертных металлов — никеля, хрома, платины, серебра, а также на стекле жирные кислоты оказались худшими смазочными средствами, чем парафиновое масло. Наоборот, на металлах, способных к химической реакции с жирными кислотами, таких, как медь, кадмий, цинк, магний, железо, алюминий, введение в масло 1% лауриновой кислоты дало заметное понижение коэффициента трения [25]. [c.343]

    Взаимодействием натриевых мыл нефтяных кислот с дихлорэтаном получают сложные эфиры — пластификаторы каучуков, резин, заменители дибутилфталата и дибутилсебацината [140]. Сложные эфиры нефтяных кислот и жирных спиртов могут применяться как базовые синтетические смазочные масла. Они отличаются высокой термической стабильностью, высокими эксплуатационными свойствами и относительно низкой стоимостью [140]. Большой практический интерес представляют азотсодержащие производные нефтяных кислот. Соли нефтяных кислот с аммиаком и аминами, амиды, нитрилы, имидазолины, четвертичные аммониевые соли обладают поверхностно-активными свойствами, являются деэмульгаторами, диспергаторами, моющими добавками, многоцелевыми присадками к топливам, маслам [140]. [c.346]

    Исследования показали, что нафтено-парафиновые фракции маловязких низкомолекулярных масел отличаются особенно пониженной стойкостью к окислению в условиях трения при высоких нагрузках, когда в зоне контакта поверхностей трения непрерывно возникают мгновенные местные скачки температур. Было высказано предположение, что повышенная окисляемость низкомолекулярных, маловязких нефтепродуктов приводит к образованию в процессе заедания (предельный случай схватывания) активных по отношению к стали продуктов окисления, вследствие чего может резко снижаться прирост износа при нагрузках, выше критической. Однако при дальнейшем повышении нагрузки действие активных продуктов окисления оказывается недостаточным для предотвращения развития процесса заедания. Противоизносные и антифрикционные свойства смазочных масел в значительной степени зависят от материала поверхностей трения. Важность химического взаимодействия между смазкой и поверхностями трения впервые была показана Боуденом с сотрудниками при исследовании смазочной способности предельных жирных кислот, спиртов с длинными алкильными цепями и предельных углеводородов. Результаты исследований, проведенных Боуденом, позволили ему сделать вывод о том, что объяснение смазочного действия жирных кислот только наличием ориентированных слоев молекул, адсорбированных на поверхностях трения, является упрошенным. [c.48]

    Глитал (ТУ 2458-019-32957739 — 01) — композиция природных высших жирных кислот и полиалкиленгликолей. Регулирует смазочные свойства растворов, а также фильтрационные, реологические и ингибирующие свойства. Физикохимические свойства фильтратов растворов, обработанных реагентом Глитал , не ухудшают естественной проницаемости коллектора, что позволяет его рекомендовать при вскры- [c.131]

    Смазочные свойства силиконовых масел можно улучшить добавлением, например, 0,05—5% жирных кислот [335, 526, 222М одновременно улучшаются также антикоррозионные свойства [150]. Смазочные свойства силиконовых мгсел очень эффективно повышаются также от прибавления арилметилсиланов, галоид рованных в ароматическом ядре. Так как эти соединения устойчивы к нагреванию и окислению, то от их прибавления стабильность силиконовых масел не снижается [411, 975, 1528]. [c.344]

    Политал (ТУ 2458-018-32957739 — 01) — композиция природных высших жирных кислот и полиалкиленгликолей, регулирует фильтрационные, ингибирзтощие свойств и смазочные свойства буровых растворов. Рекомендуется, главным образом, для вскрытия продуктивных горизонтов. Представляет собой маслянистую жидкость от светло-коричневого до белого цвета, сохраняет подвижность при отрицательных температурах. Расход реагента 1—2 % от объема обрабатываемого раствора. Биоразлагаем. [c.622]

    Для улучшения смазочной способности полисилоксановых жидкостей при трении пары сталь — сталь исследовались различные добавки. Например, для диметилсилоксанов оказался эффективным полихлорфторэтилен, для метилфенилсилоксанов — диэфир ортокремневой кислоты . Смазочные свойства силоксановых масел можно улучшить также, добавив к ним 0,05—5% жирных кис-лот о-42 при этом одновременно улучшаются противокоррозионные свойства масел. Очень эффективно повышаются смазочные свойства силоксановых масел при добавлении метилфенилсилоксанов с галогеном, присоединенным к атому углерода в ароматическом ядре. Эти соединения устойчивы к нагреванию и окислению, поэтому от их добавления стабильность силоксановых масел не сни-жается - . [c.168]

    Органические кислоты, кроме отрицательных свойств, имеют и положительные. В настоящее время считается доказанным, что прибавление к смазоч- Ному минеральному маслу небольшого количества (1 -2Уо) жирных кислот сильно улучшает смазочную способность, т. е. липкость масла. На этом основано применение некоторых присадок к минеральным маслам. [c.90]

    Комплексные кальциевые смазки, загустителями которых являются комплексные соединения высоко- и низкомолекулярных жирных кислот, резко отличаются по своим эксплуатационным свойствам от солидолов. Их основным преимуществом являются высокая термостойкость (температура каплепадения выше 200 °С) и хорошие смазочные свойства, способствующие эффективному применению в разнообразных тяжелонагруженных узлах Трения зубчатых передачах, различных подшипниках и т. п. Кроме того, комплексные кальциевые смазки отличаются хорошими противокоррозионными и защитными свойствами. Их недостатком является склонность к тик-сотропному упрочнению в результате могут ухудшаться их исходные эксплуатационные характеристики. Большинство комплексных смазок гигроскопичны — при поглощении влаги из воздуха увеличивается их предел прочности. Разработаны комплексные кальциевые смазки серии УНИОЛ их готовят на нефтяных и синтетических маслах, загущаемых комплексными кальциевыми мылами фракции СЖК Сю—С20 и солями уксусной кислоты. Испытания смазки УНИОЛ-1, приготовленной загущением остаточного масла МС-20 комплексными кальциевыми мылами СЖК, показали ее высокие эксплуатационные свойства, обеспечившие длительную и надежную работу автотранспорта и промышленного оборудования в различных условиях. К комплексным кальциевым смазкам относится и смазка ЦИАТИМ-221. [c.144]

    Натриевые комплексные мыла. Благодаря особым смазочным свойствам натриевых комплексных смазок интерес к ним не ослабевает, несмотря на их высокую растворимость в воде. Как и в случае кальциевых комплексных смазок, множество патентованных способов их получения основаны на применении длинно-и короткоцепочечных кислот, причем короткоцепочечные жирные кислоты с 2—6 атомами углерода могут быть образованы из длинноцепочечных жирных кислот, когда мыла получают при высоких температурах. Продукт, полученный из 2,0 % (масс.) олеиновой кислоты, 2,0 % (масс.) акриловой кислоты, 2,8 % (масс) NaOH, 8,0 % (масс.) гидрированных жирных кислот китового жира, 0,5 % (масс.) фенил-а-нафтиламина и 84,7 % (масс), минерального масла, имеет температуру каплепадения 232 °С при пенетрации перемешанной смазки 205/0,1 мм. При их получении жирные кислоты сначала вступают в реакцию с гидроксидом натрия в минеральном масле, затем с акриловой кислотой. После добавления остального масла смесь нагревают до 260 °С до полного растворения всех компонентов, а затем охлаждают [12.20]. [c.417]

    Присутствие регулируемого количества органической кислоты значительно улучшает смазочные свойства углеводородного масла, реагируя с металлом с образованием мыла, которое представляет собой настоящее смазочное вещество. Обычно хорошая смазка получается только в тех условиях, когда могут образовываться мыла углеводороды без добавки жирных кислот обычно обладают плохими смазочными свойствами. Боуден указывает, что цинк, кадмий, медь и магний хорошо скользят, если они смазаны парафиновым маслом, содержащим 1% лауриновой кислоты, тогда как платина, никель, хром и алюминий, которые не образуют мыл, дают ударное скольжение . Лауриновая кислота, которая плавится при 44° С, будет хорошо смазывать сталь до температуры П0° С, которая возможно соответствует температуре плавления или размягчения лаурата железа. [c.675]

    Эти данные подтверждают, что высокие смазывающие свойства реактивных топлив достаточно надежно можно обеспечить введением в них незначительных количеств (тысячных долей процента) поверхностно-активных веществ, таких как соединения типа сополимера эфиров метакриловой кислоты и спиртов С —С12 с метилвинилпиридином, соединения с гидроксильной (типа фенолов) или карбоксильной (типа жирных кислот) группой, т. е. носителями смазочной способности реактивных топлив являются небольшие количества поверхностно-активных веществ (естественных или искусственных), взаимодействующих с металлической поверхностью. Эти ПАВ накапливаются на поверхности металлов, образуя ориентированные граничные слои [4], связанные с поверхностными атомами металла силами физической или хемосорбционной природы, что и обеспечивает эффективную рраиичпую 1смаз1ку при трении. [c.80]

    Слокные эфиры неопентидовых спиртов и, в частности, сложные эфиры, полученные этерификацией пентаэритрита синтетическими жирными кислотами, используются в качестве смазочных масел. Перспективность их применения объясняется низкими температурами застывания и испаряемостью, высоким индексом вязкости, хорошими сиаэывающши свойствами [1]. [c.66]

    В заключение отметим, что адсорбция жирных кислот и ряда других по-вер.чностно-активных веществ из их растроров в неполярных жидкостях может приводить, к формированию на поверхности твердых тел граничных полимолекулярных слоев толщиною 0,05—0,5 к.км. Как показали Б. В. Дерягин с сотр. и Г И. Фукс с сотр,, механические свонствг таких слоев отличаются от свойств объемных слоев раствора и зависят от структуры и молекулярного веса молекул поверхностно-активного вещества. Было также показано, что толщина граничного слоя растворов жирных кислот к гексане или бензоле является линейной функцией длины углеводородного радикала, а температура плавления> этого слоя (снижение механических свойств до значения свойств объема раствора) зависит от температуры плавления соответствующих поверхностно-активных веществ. Граничные слои обеспечивают устойчивость дисперсных систем в неполярных жидкостях и играют важную роль в действии смазочных масел. [c.143]

    Смазочные вещества и смазки для форм. В большинстве случаев при получении формовочных материалов приходится применять смесь нескольких смазочных веществ. В рецептуры вводят до ] % таких веществ. Для снижения адгезии материала к металлам применяют наружные смазки, которые улучшают загрузочные свойства пластифицированных материалов и действуют в качестве смазки для форм. Введение внутренней смазки влияет на текучесть расплава, снижая вязкость, давление впрыска и улучшая гомогенность расплава. Положительный эффект от введения внутренней смазки возрастает по мере увеличения ее полярности и растворимости в фенольных смолах. В качестве смазок могут использоваться спирты жирного ряда, сложные эфиры жирных кислот или амиды жирных кислот. Соли жирных кислот подобно стеаратам кальция или магния занимают промежуточное положение. Нарул<-ные смазки, в качестве которых исиользуют ненолярные соединения, практически не растворяются в фенольных смолах. К. ним относятся парафиновые углеводороды и воски. [c.154]

    Соединения жирных кислот, о которых уже говорилось, относятся к категории противоэадирных смазок, которые первоначально использовались Розенбергом и Тайлером для умень-щения износа опор долота. По своему действию противозадирные смазки отличаются от обычных смазочных материалов. При очень высоких давлениях последние выдавливаются из пространства между трущимися поверхностями. Возникающий в результате этого контакт металлических поверхностей вызывает образование задиров и разрывов. По мнению Браунинга, своими смазывающими свойствами противозадирные смазки обязаны химической реакции, в которую они вступают с металлическими поверхностями при высоких температурах, возникающих в зоне контакта металл-металл. Продукт этой реакции образует тонкую пленку, прочно связанную с металлической поверхностью, и действует как смазочный материал. [c.337]


Смотреть страницы где упоминается термин Кислоты жирные смазочные свойства: [c.166]    [c.162]    [c.203]    [c.272]    [c.299]    [c.303]    [c.152]    [c.43]    [c.336]    [c.157]    [c.46]    [c.528]    [c.623]   
Физическая химия поверхностей (1979) -- [ c.353 , c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Жирные кислоты свойства

Кислоты свойства



© 2025 chem21.info Реклама на сайте