Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второе начало термодинамики применения к химическим

    Физические и химические явления исследуются в термодинамике главным образом с помощью двух основных законов, называемых первым и вторым началами термодинамики. Первое начало следует из закона сохранения энергии и материи. Второе начало характеризует направление процессов. В XX в. был открыт третий закон термодинамики, который не имеет такого широкого применения, как первый и второй, но важен для теоретического анализа химических процессов. Известно еще нулевое начало (закон) термодинамики. Все законы термодинамики являются постулатами и проверены многовековым опытом человечества. [c.12]


    Изложенная выше формулировка постулата второго начала термодинамики непосредственно приводит к количественному выражению этого начала в виде уравнений (1.25) и (1.26) и других, которые удобны для применения к решению химических проблем. Однако исторически учение о втором начале термодинамики развивалось иным путем. [c.24]

    Уравнение для расчета температурной зависимости давления пара вывел Клапейрон [2661. В этом уравнении, которое явилось Первым применением второго начала термодинамики к решению физико-химической задачи, не все величины были выражены в явном виде. Лишь спустя 16 лет Клаузиус [267, 268] и одновременно с ним и независимо от него Томсон показали, что уравнение Клапейрона имеет форму [c.35]

    Общие законы физики, на которые опирается физическая химия. Важнейшие законы, которыми приходится чаще всего пользоваться при физико-химических исследованиях,— это законы механики и термодинамики. Объекты, которыми занимаются эти науки, отличаются друг от друга. Механика исследует состояние и движение одного или немногих тел макроскопических размеров движение космических тел или падающей дробинки описывается законами механики. Если же перед нами совокупность огромного числа частиц, размеры которых очень малы по сравнению со средними расстояниями между ними и размерами самой системы, то применение законов механики к частицам, конечно, вполне возможно, но практическое вычисление свойств всей совокупности, основанное на анализе движений частиц, немыслимо из-за чудовищного числа уравнений движения. Оказывается возможным изучение свойств таких совокупностей микрообъектов при помощи законов, которым подчиняется совокупность частиц, но которые лишены смысла в применении к одной частице. Это статистические законы, составляющие содержание статистической механики. Исследование свойств большого числа молекул, из которых состоят предметы окружающего мира, началось раньше, чем было доказано существование самих молекул. Поэтому и некоторые общие законы (например, второе начало термодинамики) были сформулированы сначала без каких-либо попыток связать их содержание с фактической молекулярной структурой вещества. [c.7]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]


    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    На первый взгляд, может сложиться представление б дто использование функций распределения является лишь сугубо вычислительным npиeмo i. Нетрудно показать, что применение формул распределения является прямым следствием ряда фундаментальных положений физйки и химической термодинамики и, в частности, второго начала термодинамики [2]. [c.219]


Смотреть страницы где упоминается термин Второе начало термодинамики применения к химическим: [c.330]    [c.330]   
Физическая химия Том 2 (1936) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики

Начала тел

Начала термодинамики второе

Применение начал

Термодинамика химическая

Термодинамики второй



© 2025 chem21.info Реклама на сайте