Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОСНОВЫ ТЕРМОДИНАМИКИ Первый закон термодинамики

    На основе этого уравнения первый закон термодинамики может быть сформулирован таким образом подведенная к системе теплота расходуется на изменение внутренней энергии рабочего тела и на производство работы. Для бесконечно малых [c.16]

    Объясните на основе первого закона термодинамики, почему на холостом ходу двигатель внутреннего сгорания греется больше, чем при работе в полную нагрузку  [c.82]


    Аналитические выражения энтальпии получаются на основе первого закона термодинамики, а энтропии, энергий Гельмгольца и Гиббса с привлечением также второго закона термодинамики. Вначале можно получить на основе уравнений (13,1) и [c.250]

    На основе выводов из законов термодинамики следует, что потери тепла обусловлены при ректификации, во-первых, неэффективностью теплового объединения источников и стоков энергии (например, использования тепла верхнего продукта для подогрева питания или куба колонны), во-вторых, неэффективностью обмена энергией и работой с окружающей средой. Путем снижения количества внешней флегмы и увеличения числа ступеней (высоты колонны), использования вторичной флегмы (перераспределения потоков по высоте колонны) можно существенно уменьшить степень необратимости процесса за счет смешения неравновесных потоков и уменьшить работу, необходимую для разделения смеси на чистые компоненты. [c.484]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]

    X. т. использует понятия о типах термодинамич. систем (см. Гетерогенная система. Гомогенная система. Закрытая система, Изолированная система, Открытая система), параметрах состояния (см. Давление, Температура, Химический потенциал), термодинамич. ф-циях и термодинамических потенциалах (см., напр., Внутренняя энергия. Энтропия). В основе Х.т. лежат законы (начала) общей термодинамики. Первое начало термодинамики - закон сохранения энергаи дая термодинамич. системы, согласно к-рому работа может совершаться только за счет теплоты или к.-л. др. формы энергии. Оно является основой термохимии, изучения теплоемкостей в-в, тепловых эффектов реакций и физ.-хим процессов. Гесса закон позволяет определять тепловые эффекты расчетным путем, если известны теплоты образования каждого из в-в, участвующих в р-ции, или теплоты сгорания (для орг. соед.). Совр. термодинамич. справочники содержат данные о теплотах образования или теплотах сгорания неск. тысяч в-в, гто позволяет рассчитывать тепловые эффекты десятков тысяч хим. р-ций. Первое начало лежит в основе Кирхгофа уравнения, к-рое выражает зависимость теплового эффекта р-ции или физ.-хим. процесса ст т-ры и дает возможность рассчитать тепловой эффект процесса при любой т-ре, если известны теплоемкости в-в, участвующих в р-ции, и тепловой эффект при к.-л. одной т-ре. [c.236]


    Наряду с только что рассмотренными примерами известны и другие возможности комбинирования уравнений реакции с использованием закона Гесса. В этом читатель может убедиться, решая предлагаемые в конце главы задачи. В растворах энтальпия образования соединений и энтальпия реакций также определяются на основе первого закона термодинамики. При этом энтальпия реакции характеризует только взаимодействие компонентов раствора, вступающих в химическую реакцию. Этим объясняется тот факт, что энтальпия нейтрализации всех сильных кислот сильными основаниями одинакова и равна —57,8 кДж/моль, так как в любых реакциях нейтрализации всегда идет одна и та же реакция  [c.228]

    Однако на основе первого закона термодинамики в общем случае невозможно выразить bQ через параметры системы. [c.28]

    Это — общее уравнение, выражающее первый закон термодинамики. Оно служит основой для формального определения внутренней энергии по измеряемой разности Q — Л. [c.74]

    В предыдущей главе было показано, что первый закон термодинамики является основой для расчета теп-лот химических реакций. Однако этот закон совершенно не рассматривает вопрос о том, в каком направлении в тех или иных реальных условиях будет протекать интересующая нас реакция. Так, на основании первого закона термодинамики нельзя сказать, в какую сторону пойдет реакция  [c.28]

    На основе первого закона термодинамики [c.143]

    Экспериментальное обнаружение эквивалентности различных форм энергии послужило основой для вывода о том, что энергия сохраняется во всех физических и химических превращениях. Представление о сохранении тепловой энергии формулируется в виде первого закона термодинамики. Принято считать, что в системе, которая получает извне определенное количество тепловой энергии д, происходит изменение внутренней энергии АЕ вместо этого система за счет полученной энергии может выполнить над своим окружением некоторую работу н . В общем случае поступившая в систему извне тепловая энергия может быть частично израсходована на изме- [c.305]

    Может показаться странным, что элемент даже в идеаль- ном случае имеет к. п. д., отличающийся от е= 100%. По Планку, эта кажущаяся проблема заключается в том, что в обычной теплотехнике в основу расчетов берется первый закон термодинамики вместо второго, т. е. АН вместо АО. [c.22]

    Первый закон термодинамики. Закон Гесса. В основе изучения термохимических процессов лежит первый закон термодинамики  [c.49]

    В основе термохимических расчетов лежит ключевая идея, сформулированная Г. И. Гессом тепловой эффект зависит только от вида (природы) и состояния исходных веществ и конечных продуктов, но не зависит от пути процесса, т. е. от числа и характера промежуточных стадий. Вышеприведенная формулировка впоследствии стала называться законом Гесса. По сути, это — одна из формулировок первого закона термодинамики (см. выше), поскольку в соответствии с ним энергия не возникает из ничего и не исчезает. [c.57]

    В основе изучения термохимических процессов лежит первый закон термодинамики  [c.132]

    Этот закон, обоснованный человеческим опытом, является основой первого закона термодинамики. [c.25]

    Уже в самом начале второй мировой войны возникла срочная необходимость в получении более полных и точных термодинамических данных, относящихся к компонентам нефти. Несколько позже, в 1942 г., Американский нефтяной институт подписал проект А.Р.1.44 предусматривавший организацию при Национальном бюро стандартов, которым руководил Ф. Д. Россини, всестороннего, тщательного и строгого изучения термодинамических свойств углеводородов. Эта весьма объемная работа объединяла усилия экспериментаторов, обеспечивавших получение точных данных, теоретиков, рассчитывавших термодинамические свойства статистическим методом на основе первого закона термодинамики, и представителей нефтяной промышленности, финансировавших данную работу и обеспечивавших получение необходимых образцов, отличавшихся вполне определенными характеристиками и высокой чистотой. С 1950 г. в течение последующих десяти лет работы над проектом велись в Технологическом институте Карнеги. С сентября 1960 г. этими исследованиями руководил Б. Зволинский. В апреле 1961 г. работа над проектом А.Р.1.44 была перенесена в Центр по изучению химических термодинамических свойств при сельскохозяйственном и механическом колледже Техаса. Над осуществлением проекта А.Р.1.44 работала большая группа сотрудников. Из официального отчета [1248] и последующего дополнения [1653] можно почерпнуть подробные сведения о персонале, об оригинальных публикациях, связанных с проектом, получить полную библиографию по термодинамике углеводородов, а также извлечь информацию относительно наиболее надежных значений величин, характеризующих физические и термодинамические свойства углеводородов. В основе многих данных, приводимых в этой главе, лежат упомянутые выше сводки. [c.259]

    Упомянем еще об одном случае расчета изменения энтропии в процессе смешения двух газов, имеющих разные объемы и (т. е. числа молей щ) и температуры Тг и Т2. Для этого случая необходимо определить температуру смеси после смешения газов. Это можно вычислить на основе первого закона термодинамики (баланс теплоты), по которому [c.41]


    Термодинамика гальванических элементов. Вопрос о происхождении электрической энергии получил свое дальнейшее разрешение, когда Уильям Томсон установил связь между химической и электрической энергией в гальванических элементах на основе первого закона термодинамики, а Гельмгольц, использовав основное термодинамическое уравнение Гиббса, приспособил его для установления связи между этими энергиями и обоими законами термодинамики. [c.180]

    В 1840 г. русский академик Г. И. Гесс на основе обширных экспериментальных исследований тепловых эффектов химических реакций установил основной закон термохимии, который является одним из выражений открытого позднее первого закона термодинамики. Дальнейшее развитие термодинамика получила в работах многих ученых. Второй закон термодинамики был обоснован Р. Клаузиусом и В. Томсоном, третий закон термодинамики был открыт В. Нернстом. [c.7]

    Все процессы, связанные с переходом одного вида энергии в другой, подчинены первому закону термодинамики. На основе второго закона термодинамики, зная внешние условия, можно определить, в каком направлении и до какой степени будет протекать процесс, что имеет большое теоретическое и прикладное значение. [c.110]

    При расчетах тепловых эффектов различных химических реакций на основе первого закона термодинамики особое значение имеют два вида тепловых эффектов теплоты образования и теплоты сгорания. [c.124]

    Бесспорно, план настоящей книги является своеобразным, по крайней мере в некоторых отношениях. Первые две главы посвящены развитию основных концепций и особенно идей, лежащих в основе двух великих законов термодинамики. Это сделано намеренно с минимальным использованием математики. После того, как эти концепции освещены, к их развитию привлекается математика — такой метод принят в гл. III. Первая математическая обработка ограничивается очень простыми типами систем. Следующей логической ступенью являете распространение выводов на более сложные системы, чему и посвящена гл. IV. Идея, лежащая в основе этой главы, представляет развитие с помощью вычислений концепций двух законов в общие уравнения состояния, из которых при особых условиях почти автома-. тически получаются многие специальные уравнения. Эти уравнений [c.37]

    Выражение для функции работоспособности массы, определяющей максимальное количество полезной работы, которое может быть произведено системой при переходе ее из исходного состояния А в состояние равновесия G с окружающей средой, может быть полечено на основе применения уравнения первого закона термодинамики к процессу перехода. Принятый для оценки работоспособности системы процесс перехода ее в состояние равновесия с окружающей средой представлен в р—К-диаграмме состояния на рис. 30 (Л—а—0). [c.98]

    Получим это уравнение методом циклов. Изобразим элементарный цикл, состоящий из двух изотерм и двух адиабат в области фазового перехода, соответственно в р—V- (рис. 36, а) и Т—5-(рис. 36, б) диаграммах. На основе первого закона термодинамики для цикла справедливо равенство бQ = ЬЬ. Это значит, что площади цикла в р—V- и Т—5-диаграммах равны [c.111]

    При рассмотрении тепловых эффектов реакций на основе первого закона термодинамики полагали, что реакции просто имеют место. [c.138]

    Химическая термодинамика есть приложение законов и методов термодинамики к изучению химических и физико-химических процессов. Первый закон термодинамики служит основой для определения энергетических эффектов этих процессов. На него опирается термохимия, которая возникла раньше химической термодинамики и до открытия первого ее закона, но затем вошла как составная часть в химическую термодинамику. Второй закон термодинамики лежит в основе изучения химических равновесий и направлений химических реакций, а также фазовых равновесий и превращений. Опять-таки сам факт химических равновесий и важные законы, относящиеся к фазовым переходам, были открыты либо до возникновения химлческой термодзанамики, либо вне связи с ней, но затем феноменологические обобщения в этой области получили свое истолкование с точки зрения общих термодинамических принципов. Результаты, полученные в рамках нетермодинамической термохимии и феноменологического учения о химических и фазовых равновесиях и переходах, способствовали возникновению и дальнейшему развитию самой химической термодинамики. [c.109]

    Первый закон термодинамики, который называется также законом эквивалентности теплоты и работы, является одним из частых случаев закона сохранения энергии и служит основой всех тепловых и энергегических расчетов. Этот закон формулируют следующим образом тепловая энергия не может ни исчезнуть бесследно, ни возникнуть вновь из ничего она мом<ет только перейти в строго эквивалентное количество энергии другого рода. При этом установлено, что если система поглощает извне или отдает в окружающее пространство тепло, то последнее расходуется только на изменение внутренней энергии данной системы и на совершение ею внешней работы (если таковая имеет место в данном процессе). Таким образом, если внутре1шяя энергия какой-либо системы (например, газа в сосуде и т. п.) после сообщения этой системе некоторого количества тепла (ЛQ) изменилась на Д(7, то, согласно первому закону термодинамики, имеем  [c.66]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Химическая термодинамика. В этом разделе физической химии рассматриваются основные соотношения, вытекающие из первого закона термодинамики, которые позволяют рассчитать количество выделяемой или иоглощаемой теилоты и определить, как будет влиять иа него изменение внешних условий. На основе второго закона термодинамики определяется возможность самопроизвольного течения процесса в интересуюи ,ем нас направлении, а также условия и положение равновесия и его смещения иод влиянием изменения внешних условий. [c.23]

    Первый закон термодинамики. Раздел химической термодинамики, посвященный изучению тепловых эффектов химических реакций, теплоемкостей веществ и других связанных, с ними величин, называется термохимией. В основе изучения термохпмических процессов лежит первый закон термодинамики, закон сохранения и превращения энергии. Согласно первому закону теплота Q, поглощенная системой при переходе из начального состояния в конечное, идет на увеличение ее внутренней энергии U и на соверщение работы против внещних сил, в частности против внешнего давления =p(v2 Vi) =pAv  [c.33]

    Задачи практики требуют сведений о возможности протекания химических реакций, о полноте их завершения, т. е. о выходе продуктов. Такие задачи связаны с предсказанием направления процессов, и они не могут быть решены на основе первого закона термодинамики. Простейший пример смесь газов — неон и аргон — находится в одном сосуде и представляет собой изолированную систему. Возможно ли самопроизвольное разделение этих газов Так как внутренняя энергия системы в целом не изменяется, то этот процесс не противоречил бы первому закону термодинамики. Подобным же образом этот закон не позволяет предсказать направление реакции СаСОз (т)=СаО (т)4-С02 (г) при тех или иных параметрах состояния (например, р и 7). Он ограничивается лишь утверждением, что слева направо реакция [c.18]

    Теплопроводность, внутреннее троние и химические реакции в потоке вызывают необратимые процессы, связанные с рассеянием, т. е. переходом в тепло (диссипацией) энергии. При составлении уравнения переноса энергии мы исходим из закона сохранения энергии (для тепловых явлений — первого закона термодинамики), а также из второго закона термодинамики. На основе этих двух законов и составлено уравнение (5. 16) гл. V. В нем не учитывается диссипация энергии внутреннего трения. [c.513]

    В основе Т. X. лежат общие положения и выводы термодинамики. Первый закон тер.иодинамики слу-ишт основой термохимии, и основной закон термохимии — Гесса закон — является важнейшим его следствием. Предметом термохимии служит изучение теплоемкостей различных веществ и тепловых эффектов химич. реакций и различных физико-химнч. процессов. Закон Гесса дает возможность определять тепловые эффекты расчетным путем, не прибегая к дорогостоящим и не всегда доступным экспериментальным опродолоииям. При таких расчетах большую роль играют теплоты образования рассматриваемых веществ, т. к., зная теплоту образования каждого из веществ, участвующих в данной реакции, легко рассчитать ее тепловой эффект. Для органич. реакции подобную же роль играют и теплоты сгорания. Современные справочные издаппя содерн ат данные [c.48]

    На основе закона сохранения энергии можно сделат вывод, что она расходуется на увеличение внутренне энергии всей системы двигателя (если допустить, чт тепло не рассеивается в окружающую среду, т. е. чт двигатель хорошо теплоизолирован). Распространени этого утверждения на любое тело (или на совокупност тел, т. е. на систему) приводит к математической форм> лировке первого закона термодинамики [c.28]

    На основе первого закона термодинамики в приложении к растворам электролитов В. Нерст предложил формулу для определения электродного потенциала  [c.308]

    В настоящее время термодинамические методы находят широкое применение в самых различных областях химии и химической технологии. Как исследователи, работающие в лабораториях, так и инженеры химики, в первую очередь инженеры-проектировщики, постоянно сталкиваются с необходимостью термодинамического рас смотрения различны.х вопросов. Каждый научный работник и каждый инженер, задумывающийся над осуществлением какой-либо новой химической реакции, прежде всего стремится узнать, возможна ли она термодинамически, т. е. насколько положение равновесия этой реакции сдвинуто в сторону образования интересующего его продукта. Пользуясь термодинамическими методами, можно рассчитать теплоты различных химических и физико-химических процессов, температуру, развивающуюся в двигателе, поршневом или реактивном, длину реактора, в котором интересующая нас реакция будет протекать до нужной глубины превращения исходны. веществ, и решить многие другие важные вопросы. По мере того как термохимия и наука о строении молекул накапливают все больше и больше конкретных данных, увеличивается и число вопросов, для которых можно, найти точное решение расчетным путем, не прибегая к экспериментальным исследованиям. Наряду с этим создается возможность отыскания различного рода закономерностей, помощью которых можно проводить вычисления, не имея соответствующих данных, но получая результаты с удовлетворительной для многих целей точностью. Этими обстоятельствами и объясняется широкое проникновение термодинамических вычислений в различные области химии. Б связи с этим книга Беннера Термохимиче-ские расчеты может оказаться полезной для различных кругов читателей. Инженеры найдут здесь простые методы расчета некоторых видов химической аппаратуры, химики-органики — расчеты равновесий важных органических реакций, студенты и аспиранты смогут познакомиться с основами вычислений термодинамических величин по спектроскопическим данным. К достоинствам книги относится конкретность изложения, наличие большого количества задач и примеров. Рекомендуя книгу Беннера всем желающим применять термодинамические методы на практике, мы никак не можем рекомендовать ее для изучения термодинамики. Основные законы термодинамики сформулированы автором во многих случаях недостаточно строго, а рекомендуя различные методы расчета, автор [c.5]


Смотреть страницы где упоминается термин ОСНОВЫ ТЕРМОДИНАМИКИ Первый закон термодинамики: [c.154]    [c.154]    [c.154]    [c.49]    [c.92]   
Смотреть главы в:

Курс физической химии. т.1 -> ОСНОВЫ ТЕРМОДИНАМИКИ Первый закон термодинамики

Курс физической химии Том 1 Издание 2 -> ОСНОВЫ ТЕРМОДИНАМИКИ Первый закон термодинамики

Курс физической химии Том 1 Издание 2 (копия) -> ОСНОВЫ ТЕРМОДИНАМИКИ Первый закон термодинамики




ПОИСК





Смотрите так же термины и статьи:

Закон первый

Закон термодинамики

Закон термодинамики первый

Основы химической термодинамики Нулевой и первый законы термодинамики. Термохимия

Термодинамики основы

Термодинамики первый

Термодинамические основы теории горения п газификации твердого топлива Первый и второй законы термодинамики. Полная энергия и свободная эпергия системы. Термодинамический потенциал

Термодинамические функции состояния, введенные на основе объединения первого и второго законов термодинамики. Фундаментальные уравнения Гиббса



© 2025 chem21.info Реклама на сайте