Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный комплекс возможность изучения

    Оболочка активного комплекса. Под оболочкой активного комплекса подразумеваются те изменения среды, окружающей ядро к, которые необходимы для возникновения активного комплекса, т. е. ведут к локальному разогреву системы—увеличению ее энтальпии и энтропии. Из табл. 13 следует, что энтальпия и энтропия активации постепенно растут с увеличением числа атомов углерода в радикале R и степени разветвленности углеродного скелета радикала. Наибольшая энтальпия активации среди изученных спиртов ROH наблюдается у циклогексанола 31 кДж/моль. Для объяснения этой закономерности можно предложить следующую рабочую гипотезу. Энтальпия активации в данном случае необходима, главным образом, для создания в молекуле А колебательной энергии возбуждения, достаточной для того, чтобы разорвать две связи О — И...О в ядре активного комплекса (см. Vni.145). С увеличением числа атомов С в углеводородном радикале и степени его разветвленности возрастает число связей С — Н...С и С — Н...0 между радикалом R и окружающими молекулами ROH. Связи с окружающими молекулами способствуют колебательной дезактивации возбужденных ассоциатов [38]. Кроме того, при большем числе связей энергия возбуждения распределяется между большим числом колебательных степеней свободы. Для появления активного комплекса нужно, чтобы число связей С — H...С и С — Н...0 с окружением уменьшилось, энергия возбуждения комплекса увеличилась, возможности ее притока к ядру активного комплекса возросли, а отток энергии возбуждения в окружающую среду упал. Так как усложнение радикала R сопровождается ускорением оттока энергии колебательного возбуждения в окружающую среду, то для поддержания энергии возбуждения в Pi на должном уровне требуется разорвать большее число связей с окружением. Возрастание энтальпии активации сопровождается увеличением энтропии активации системы. [c.302]


    Так как поверхностные атомы катализатора принимают участие в образовании промежуточных активных комплексов, возможность образования последних должна, очевидно, зависеть от взаимного расположения активных атомов ( центров ). Следовательно, существует определенное соответствие между геометрией расположения атомов на поверхности катализатора и типом катализируемых им реакций. В наиболее законченном виде принцип геометрического соответствия был выдвинут А. А. Баландиным в 1929 г. в связи с изучением реакции дегидрирования циклогексана. В дальнейшем принцип геометрического соответствия являлся предметом многочисленных исследований, обзор которых можно найти в литературе [29, 30]. [c.42]

    Экспериментальные методы изучения активных комплексов до последнего-времени отсутствовали [10]. Квантовомеханические расчеты поверхностей потенциальной энергии затруднительны даже в случае простейших реагирующих систем частиц. Использование таких расчетов для предсказания энергий активации и других свойств активного комплекса в принципе возможно, но на практике весьма ограничено. В TA время жизни активного комплекса не определено. Существует точка зрения, что сама постановка вопроса об экспериментальном исследовании свойств активного комплекса в рамках TA не имеет смысла. [c.113]

    Комплексы сывороточных белков с другими веществами белковой природы могут быть также выделены с помощью гель-хроматографии, как это было уже показано на примере комплекса гемоглобин — гаптоглобин (фиг. 16) [49]. Еще проще количественно определить емкость гемоглобина (способность гемоглобина к комплексообразованию) на сефадексе G-100 [50]. Фракция макроглобулинов (выделение на сефадексе G-200), очевидно, содержит белок, связывающий трипсин [51, 52]. Активность при этом сохраняется лишь частично [51, 52]. Комплексы антиген — антитело часто выделяли на пористых гелях, а затем после разложения на составные части исследовали более подробно (см. литературу, приложение IX). В предыдущем разделе на примере инсулина были рассмотрены возможности изучения растворимых иммунокомплексов. Иммунологические методы в сочетании с гель-фильтрацией играют важную роль в исследовании строения Y-глобулинов. Среди работ на эту тему (см. литературу, приложение X) имеются блестящие исследования, посвященные восстановительному расщеплению и выделению L- и Н-цепей, их рекомбинации, ограниченному действию папаина и, наконец, иммунологическим свойствам интактного белка и его фрагментов. [c.218]


    Теория жидкого состояния значительно хуже разработана, чем теория газообразного состояния, и это отчетливо сказывается на уровне теоретической интерпретации явлений химической кинетики в конденсированной фазе. Теория реакций в газовой фазе базируется на двух следствиях молекулярно-кинетической теории возможности расчета числа столкновений между реагирующими молекулами и применимости к реагирующей системе максвелл-больцмановского распределения. При переходе к реакциям в растворах приходится рассматривать третий объект — молекулы растворителя. При этом возможны два крайних случая 1) молекулы растворителя не входят в состав активного комплекса, и их взаимодействие с молекулами растворенного вещества сводится к столкновениям и вандерваальсовому взаимодействию 2) молекулы растворителя входят в состав активного комплекса и в той или иной мере определяют кинетические свойства последнего. Взаимодействие второго типа, пожалуй, больше относится к каталитическим явлениям и будет рассмотрено ниже. Ограничиваясь первым случаем, рассмотрим, в какой мере методы кинетической теории применимы к реакциям в растворах и можно ли для подсчета числа столкновений между реагирующими молекулами в растворах использовать газокинетическое уравнение. Дать обоснованный ответ на этот вопрос трудно и приходится ограничиваться критерием практической применимости расчета. Поскольку при изучении реакций в растворах удобно пользоваться значениями концентраций, выраженных в моль/л, газокинетическое выражение для константы скорости запишется в виде [c.170]

    Развитие теории активного комплекса в направлении изучения конфигурации переходного состояния и возможности согласованных электронных переносов (работы Робинсона, Юнга, Караша, Свейна, Матье, Сыркина, Уитмора, Арнольда и других, стр. 323) приводит к некоторым поправкам в ранее существовавшие представления о механизме реакций, в частности, и в представления о механизме ионных процессов. По-видимому, в значительном числе случаев вместо отщепления и присоединения протона (или вообще ионов) имеется энергетически более выгодный циклический перенос электронов. [c.371]

    Растительная клетка располагает неограниченными возможностями в создании как активных, так и не активных комплексов различной устойчивости. Это позволяет сформулировать основное положение, которое может быть использовано при изучении поступления, характера обмена, формы связи и физиолого-био-химической функции микроэлементов. Согласно этому принципу металлы в активной и неактивной форме присутствуют, взаимодействуют и мигрируют в организме в виде комплексов с различными органическими соединениями клетки концентрация их в отдельных участках биологической системы зависит от природы связывающих элемент центров. [c.278]

    При неполной информации о механизме процесса проводится функциональное изучение объекта в ходе эксперимента фиксируют входные и вы.ходные параметры объекта. На рис. 1 параметры хи. .., Хп — входные измеряемые и регулируемые параметры объекта, < 1,. .., — неконтролируемые, случайным образом изменяющиеся параметры, шум объема уи. .., — выходные параметры. В качестве случайных рассматриваются обычно параметры, которые по тем или иным причинам невозможно (или очень трудно) учесть. Например, падение активности катализатора, изменение состояния поверхности теплообменной аппаратуры, колебания наружной температуры воздуха и т. п. Комплекс параметров х, . .., хи называют также основным, он определяет условия эксперимента. Такое подразделение входных параметров на основные и случайные условно. Случайным будет любой параметр, не вошедший в основной комплекс входных параметров, даже если он хорошо изучен. В зависимости от постановки задачи и технических возможностей некоторые [c.5]

    По мере совершенствования математического обеспечения происходит усложнение решаемых задач, с одной стороны, и массовое использование комплексов программ — с другой. Возрастает как сложность создания систем, так и их эксплуатации. Разработчик системы имеет возможность выбора необходимой конфигурации вычислительной машины, наиболее полно соответствующей поставленной задаче, и, создавая систему, ориентируется на развитое системное математическое обеспечение, так как это значительно упрощает этапы разработки. Расширение круга потребителей приводит к необходимости создания специальных средств взаимообмена потребителей с системой. Это позволяет активно использовать систему без дополнительного изучения средств вычислительной техники и программирования. Поэтому при разработке операционных систем необходимо уделять большее внимание средствам, обеспечивающим взаимообмен пользователя и системы на языке, близком к естественному. [c.12]


    Во многих капиталистических странах наряду с осуществлением комплекса мер по более экономному использованию нефти рассматривается вопрос о расширении ресурсов сырья для производства традиционных нефтепродуктов за счет использования различных видов синтетической нефти (сланцевой смолы, битуминозной нефти,.продуктов ожижения угля и др.), суммарные ресурсы которых намного превосходят запасы обычной нефти. Активное y ia--стие в изучении возможностей переработки на НПЗ синтетической нефти принимают ведущие нефтяные компании, заинтересованные в диверсификации источников обеспечения своих заводов сырьем. [c.168]

    Таким образом, мы пришли к выводу, что на ванадиевом катализаторе, повидимому, весь. процесс перехода от алкана к ароматическому углеводороду протекает одновременно внутри активного комплекса алкана с активными центрами катализатора. При этом реакции образования олефинов и образования ароматических соединений протекают параллельно и на различных активных центрах катализатора. Все эти рассуждения, естественно, справедливы для изученного нами ванадиевого катализатора. Возможно, что на другом катализаторе, с более благоприятным для оле-фйнообразования распределением активных центров, преобладающей может оказаться именно реакция олефинообразования, и тогда большая часть ароматических соединений будет образовываться через олефины, которые станут промежуточными продуктами реакции. В случае ванадиевого катализатора нам кажется, что однажды образовавшаяся молекула олефина имеет не большие шансы на дальнейшее превращение в ароматический углеводород, чем исходная молекула алкана. [c.243]

    Плато предельного диффузионного тока полярографической волны часто искажается наложенным максимумом, который может быть обусловлен неравномерным подводом деполяризатора к капельному электроду. Эти максимумы можно подавить добавлением следов поверхностно-активного вещества. При изучении комплексов металлов чистая желатина, тритон Х-100, цетилтрнметиламмонийбромид, метиловая целлюлоза, метиловый красный и фуксин применяются как подавители максимума. Часто пригодны концентрации 0,005—0,017о, но каждый раз необходимо доказывать отсутствие конкурирующего комплексообразования. Тритон Х-100, по-видимому, — наилучший из этих реагентов , он образует устойчивые растворы. Однако применение подавителей максимума ни в коем случае не является обязательным [4] и желательно избегать применения любого из них, если это возможно [5, 45, 50, 63]. [c.215]

    Эти различия в скорости, возможно, указывают на то, что во всех изученных авторами случаях, выделение азота связано не просто с распадом молекул фенилдиазоацетата, протекающим без участия растворителей, а с предварительным образованием промежуточного активного комплекса с молекулами того растворителя. [c.281]

    Изучение активности комплекса (ВизР)2(81МеС12)2 показывает, что он не более активен, чем исходный комплекс, и активируется только при нагревании за время индукционного периода. Возможная структура получающегося при этом активного центра рассмотрена нами в другой работе [6]. [c.54]

    Новые методы теории химической кинетики позволяют в принципе приблизительно вычислять константы скоростей, а следовательно, и отношения кп/кв, вовсе не прибегая к опытному изучению кинетики. Сейчас, однако, такие расчеты еще возможны лишь для простых молекул, для которых можно построить диаграмму энергии в функции от междуядерпых расстояний ( энергетическую карту>), но и в этих случаях приходится пользоваться эмпирическими упрощающими допущениями. Для этого пользуются методом переходного состояния или, как его еще называют,— методом активного комплекса. [c.188]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]

    Трудно найти другую, столь же подготовленную и богатую потенциальными возможностями область для теоретических и прикладных изысканий. Эта промежуточная область особенно плодотворна для химиков-неоргаников и исследователей катализа. Одна из задач настоящей книги состоит в том, чтобы побудить химиков-оргапиков к более активному участию в изучении этой проблемы. Тогда в следующем десятилетии появятся десятки новых соединений и новых методов синтеза, получение и создание которых станет возможным благодаря применению металлоорганических комплексов переходных металлов. [c.9]

    Полученные канальные полимеры представляли собой белые хлопья, которые при сушке на воздухе принимают серую окраску и имеют т. пл. 175—225°. После продолжительной обработки водой полимер содержал — 2,5% S и 2,2% N. Таким образом, было выяснено, что в реакции полимеризации принимает участие примерно каждая сотая молекула тио-мочовины. Описаны также [49] пять высокомолекулярных кристаллических полимеров, которые были синтезированы методом облучения мономера, ориентированного в канальных комплексах мочевины. Это полибутадиен, полиакрилонитрил, полиакролеин, поливинилхлорид и сополимер винилхлорида и акрилонитрила. Вообще канальная полимеризация была изучена на примере 13 различных соединений, и полученные при этом данные позволили авторам высказать мнение, что методом канальной полимеризации могут быть получены изотактические и синдиотактические полимеры. Особого внимания, с нашей точки зрения, заслуживает изучение возможности применения для полимеризации оптически активной мочевины. Возможно, что, как и предполагали авторы цитируемой работы, таким образом удастся из оптически неактивных мономеров синтезировать оптически активные полимеры. Нужно заметить, что, к сожалению, за последние 3—4 года не было получено никаких новых данных в области канальной полимеризации и пока эти исследования не получили сколько-нибудь широкого развития. [c.68]

    Очень интересным типом азотсодержащих соединений нефти являются порфирины. Они имеют такое же строение, как порфири-новый комплекс, входящий в молечулу хлорофилла или гема, только вместо магния (хлорофилл) или железа (гем) в порфири-новых комплексах иефти встречается ванадий или никель. Пор-с )ириновые комплексы нефти фотоактивны, они способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах диспропорционирования водорода в процессе генезиса нефти. Очевидно, более глубокое изучение этих природных соединений позволит расширить наши представления о происхождении нефти, а возможно, и выделить новый вид катализаторо в с обратимыми окислительно-восстановительными функциями, способными ускорять определенные реакции подобно хлорофиллу в хивых растениях. [c.204]

    Перенос электронов по дыхательной цепи митохондрий приводит к аккумуляции энергии окислительно-восстановительных реакций в виде АТФ. Протекание эндергонической реакции синтеза АТФ из АДФ и Ф ( 10 ккал/мол) возможно за счет экзергонической реакции окисления НАДН или сукцината кислородом. Механизмом, обеспечивающим сопряжение этих двух реакций, является АТФ-синтетазный комплекс, способный в определенных условиях катализировать гидролитический распад АТФ. Последняя реакция (АТФазная активность) служит удобным объектом для изучения механизма окислительного фосфорилирования. Схема, иллюстрирующая процесс образования и распада АТФ в митохондриях, приведена на рис. 60. [c.471]

    Применение этого электрода дало возможность изучения таких систем, как и — U I3. Эти системы в растворителях типа КС1 — Li l являются обратимыми, и значение коэффициента п в уравнении Нернста близко соответствует валентности иона, т. е. 3. Обратимый электродный потенциал обусловлен, таким образом, простым равновесием - - Зе U. Расчеты коэффициентов активности указали на образование анионного комплекса. > [c.366]

    Изотопный эффект стал очень важным сродством для изучения механизма химических процессов и за последние годы с успехом был применен во многих работах. Однако состояние его теории все еще сильно отстает. Сейчас вычисление величины изотоиного кинетического эффекта возможно лишь путем введения тех или иных допущений о строении активного комплекса, но эти допущения могут быть сделаны или проворены лиигь сравнением с известным заранее экспериментальным результатом. Мало прибавляют и часто цитируемые расчетные способы Бигеляйзена. Они также не предсказывают величины изотопных эффектов, а могут лишь давать обоснование найденных из опыта значений этих эффектов, да и то не всегда с удовлетворительным совпадением. [c.370]

    При контакте водных растворов реагентов с пористой средой возможна их адсорбция на твердой поверхности коллектора. Это, с одной стороны, ведет к уменьшению содержания химреагента в водной фазе, а с другой - к изменению смачиваемости, играющей основную роль в процессе капиллярного вытеснения нефти водой и химическими реагентами. В связи с этим был проведен комплекс исследований по изучению поверхностной активности композиций в системе нефть - вода - поверхность коллектора [98,117], по капиллярному впитыванию в пористую среду, адсорбции в статических условиях и капиллярному довытеснению нефти методом центрифугирования. [c.154]

    Биоиеоргаиическая химия исследует структуру и функциональную активность комплексов неорганических ионов с органическими молекулами (лигандами), их участие в процессах жизнедеятельности вплоть до изучения возможности использовать координахщонные соединения в качестве моделей биологических систем. [c.6]

    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Недавние исследования динамики молекулы лизоцима с помощью кристаллографических методов показали [55, 56], что атомные смещения в белке наиболее выражены в области активного центра фермента. Хотя эти исследования иока носят лишь постановочный характер, не исключено, что в будущем применение рентгеноструктурного анализа именно для изучения динамических свойств молекул белка (определение средних амплитуд смещения каждого атома от его усреднеппой позиции в кристалле), помимо зарекомендовавших себя исследований статических свойств белковых молекул в кристалле (оиределение усредненных координат всех атомов в молекуле на основе соответствующего распределения электронных плотностей), может дать важную и принципиально новую информацию о структуре ферментов н механизмах их действия. Далее, обещающими являются новые возможности прямого рентгеиоструктурного анализа промежуточных состояний в ферментативном катализе путем охлаждения кристаллов фер-мент-субстратного комплекса в подходящих водноорганических растворителях и определепия структуры образующихся молекулярных комплексов непосредственно в ходе реакции [57, 58]. Этот [c.158]

    Механизм взаимодействия сульфидов с поверхностью минерала при флотации пока не изучен. Однако можно предположить, что гидрофобизации поверхности минера— лов нефтяными сульфидами становится возможной за счет координационного связывания их активными поверхностными центрами, в частности поверхностными ионами. Координационная связь между молекулой сульфида и поверхностным ионом может образбваться за счет свободной пары электронов атома серы. Упрочнению комплекса способствует также возникновение донорной я-связи между ионом и реагентом. [c.203]

    Установление количеств, зависимости св-в кристаллич. в-в от их структуры пока оказывается возможным лишь в редких случаях (напр., расчет энтальпий сублимации орг. соединений). В настоящее время возможны гл. обр. качественные оценки, к-рые тем не менее имеют существ, практич. значение, напр., при изучении влияния малых добавок на синтез и св-ва монокристаллов (лазерных, люминесцентных, полупроводниковых и др. материалов), в вопросах физики и хи-Мин металлов и сплавов, полупроводников и др. Активно изучается влияние кристаллич. структуры на хим. р-ции в твердом теле. Кристаллохим. подход используется в техн. материаловедении (неорг. материалы, металлы, сплавы, цементы, бетоны, композиты, полимеры и др.). Изучение строения комплексов белок - субстрат, структуры нуклеиновых к-т в кристаллич. состоянии позволило модифицировать хим. состав белков с целью улучшения их бнол. ф-ций, что важно для биохимии, медицины и биотехнологии. [c.536]

    В некоторых случаях дифракция рентгеновских лучей может быть использована для определения абсолютной конфигурации оптически активных веществ. В 1951 г. Бижро, Пирдеман и ван Боммель изучили натриеворубидиевую соль (+)-винной кислоты с помощью дифракции рентгеновских лучей и нашли, что ее абсолютная конфигурация соответствует той, которая была произвольно выбрана Фишером из двух возможных энантиоморфных структур 100 лет назад. Дифракция рентгеновских лучей находит также широкое применение в неорганической химии при определении как структур, так и правильных формул многих гидридов бора и карбонильных комплексов металлов, которым ранее были приписаны ошибочные формулы. Во многих случаях дифракция является единственным практическим методом установления правильного состава соединений. При изучении искусственно полученных элементов— нептуния, плутония, кюрия и америция — стало возможным быстро устанавливать их чистоту и химический состав, используя чрезвычайно малые количества вещества и не разрушая образцы. [c.583]

    В исследовании взаимодействий полифункциональных гормонов и рецепторов с привлечением синтетических аналогов не исключены ситуации (они не предсказуемы, поскольку выбор аналогов, как правило, случаен), когда наиболее предпочтительная конформация синтетического пептида стерически комплементарна активному центру рецептора, но необходимый комплекс тем не менее не образуется, так как модифицированная последовательность не содержит остатков, необходимых для образования эффективных контактов с функциональными группами рецептора. Возможен, конечно, и прямо противоположный случай, приводящий к тому же результату. Принципиально слабым местом в используемом в настоящее время подходе к установлению зависимости между структурой и функцией пептидов и, в частности, гормонов является то, что он базируется на случайном поиске синтетических аналогов методом проб и ошибок Поэтому, отдавая должное усилиям в экспериментальном и теоретическом изучении искусственно модифицированных последовательностей энкефалинов, следует сказать, что при существующем интуитивном выборе модельных соединений можно рассчитывать лишь на частный успех. Качественный прогресс здесь можно ожидать только при строго научном, а не случайном подборе аналогов, иными словами, при отходе от метода проб и ошибок к методу, обладающему предсказательными возможностями и доказательной силой. Первая попытка в этом направлении [28, 29] основывается на решении обратной структурной задачи, т.е. на сознательном, целенаправленном конструировании химического строения немногочисленных искусственных аналогов, пространственное строение которых в своей совокупности отвечает набору низкоэнергетических, физиологических активных состояний природного гормона (см. гл. 17). Детально структурнофункциональная организация природных пептидов будет обсуждена в следующем томе издания "Проблема белка". О первых успехах рентгеноструктурного анализа в изучении трехмерных структур рецепторов рассказывается во втором томе издания [98. Гл. 3, 4]. [c.353]

    Вероятно, что при алкилировании первичными галогенидами свободные карбениевые ионы в реакции не участвуют. В таких случаях ионы могут существовать в форме диполярных комплексов (как показано на схеме уравнений 51—55) или в виде тесных ионных пар. Как показало изучение кинетики, некоторые реакции имеют третий порядок, т. е. первый порядок по каждому из компонентов по электрофильному реагенту, ароматическому субстрату и катализатору. Поскольку известно, что свободные карбениевые ионы атакуют арены быстро, то скорость реакции не должна была бы зависеть от концентрации ароматического субстрата, если бы медленной стадией было образование карбениевого иона. Другую возможность представляет собой реакция 8м2 относительно электрофила. Такая возможность исключается во многих случаях, поскольку при использовании соответствующих хиральных электрофилов наблюдается почти полная рацемизация. Заслуживает внимание одно исключение в случае оптически активного метилоксирана [37], которое объясняется, по-видимому, полной инверсией. [c.351]


Смотреть страницы где упоминается термин Активный комплекс возможность изучения: [c.32]    [c.204]    [c.107]    [c.287]    [c.305]    [c.178]    [c.178]    [c.65]    [c.304]    [c.88]    [c.33]    [c.251]    [c.248]    [c.376]    [c.251]    [c.159]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Активный комплекс

Комплекс активный Активный

Комплекс активный Активный комплекс



© 2025 chem21.info Реклама на сайте