Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смазка элементов вакуумных систем

    Вводы для передачи движения. Для правильного функционирования внутренних элементов вакуумной системы, таких как затворы, модуляторы света, держатели сменных масок и подложек и т. д. необходима передача внутрь вакуумной камеры поступательного, вращательного или колебательного движения. К настоящему моменту уже разработан много вариантов вводов этого типа и непрерывно продолжается разработка модификаций [248]. Наибольшее применение для передачи движения нашли вводы с прокладками из эластомеров, с металлическими сильфонами или с магнитным приводом. Несколько вариантов вводов с уплотнителями на валу из эластомеров показаны на рис. 79. В варианте а используется двойное уплотнение кольцевыми прокладками, допускающее как возвратнопоступательное, так и вращательное движение, см. разд. 4 Б, 2). Обычно вал центрируется самими прокладками, однако иногда для обеспечения более высокой точности центровки применяются внешние шарикоподшипники. Для уменьшения трения используются силиконовые масла, имеющие низкое давление паров. Это особенно существенно для вводов с возвратно-поступательными перемещениями. Для вводов вращения можно использовать специфические антифрикционные свойства тефлоновых прокладок (или резиновых прокладок, покрытых тефлоновыми оболочками). Пространство между валом и отверстием можно либо откачивать для обеспечения охранного вакуума, либо заполнять маслом или специальной антифрикционной смазкой. Последний вариант характерен для высоковакуумных вентилей с линейным перемещением штока. Такие вводы серийно выпускаются с диаметрами вала от 6 до 50 мм, линейным перемещением до 10 см и скоростью вращения до 500 об/мин. Некоторые типы вводов вращения с антифрикционной смазкой позволяют увеличить скорость вращения более чем до 1000 об/мин, при скорости натекания не выше 10 мм рт. ст. л с 1. Применение вводов с уплотнителями на валу для вакуумных систем с давлением ниже 10 мм рт. ст. проблематично, особенно если требуется обеспечить возвратно-поступательное движение. Последние часто являются причиной резких изменений уровня вакуума вплоть до двух порядков величины, в зависимости от амплитуды перемещений, скорости вращения и типа антифрикционной смазки, На рис. 79, б [c.281]


    Идентификация вакуумных течей. Задача идентификации небольших течей в вакуумной камере усложняется обычно наличием так называемых виртуальных течей, также дающих вклад в атмосферу остаточных газов. Эти течи обусловлены небольшими объемами газа, захваченного в карманы внутри самой системы и медленно выделяющегося из них при снижении давления в камере. Источниками виртуальных течей могут быть глухие резьбовые отверстия с винтами, из которых газ просачивается в вакуум, некачественно выполненные спаи или уплотнения с двойными прокладками, а также другие детали элементов, изолирующие некоторый объем газа, связанный с высоким вакуумом через очень узкие отверстия. Ответственными за аномально высокое давление остаточных газов могут стать также и материалы, обладающие большой адсорбционной емкостью, например, смазка, активно сорбирующая газы, или пористые материалы, равно как и некоторые сорта керамики или дерево, случайно оставленное в системе. Подобно виртуальной течи могут действовать также вымораживающие ловушки, поскольку давление паров таких конденсаторов, как вода или Oj при обычных температурах вымораживания в условиях высокого вакуума становится уже существенным [227, 228]. Поиск действительной течи при наличии в системе виртуальных источников может оказаться очень продолжительным и безуспешным. Таким образом, первоочередной задачей поиска является обнаружение именно виртуальных течей. К сожалению, проблема разделения течей является очень трудной. Для выделения вкладов конденсируемых и обычных газов иногда полезно внимательно просле- [c.311]

    Специальные проблемы. Все типичные для напылительных систем непрерывного действия проблемы обусловлены наличием в них движущихся элементов, например, устройств для переноса подложек или для смены и совмещения масок с подложками. Трудности возникают в связи с тем. что трение в вакууме существенно выше, чем на воздухе. В результате в вакууме часто возникают различные механические неисправности типа заедания, плохого контакта маски с подложкой или невозможности их точного совмещения. Эти трудности усугубляются, если подложка подогревается, что почти всегда имеет место. Использование антифрикционной смазки из-за ее большой скорости газовыделения следует избегать, особенно если рассматриваемый элемент подвергается нагреву. В вакуумных системах для снижения трения используют дисульфид молибдена или пленка тефлона, но и нх способность выдерживать нагрев без значительного увеличения газовыделения ограничена. [c.309]


Смотреть страницы где упоминается термин Смазка элементов вакуумных систем: [c.312]   
Технология тонких пленок Часть 1 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Смазка элементов вакуумных систем в системах непрерывного действия и в сит

Смазка элементов вакуумных систем вводов для передачи движения

Смазка элементов вакуумных систем влияние адсорбции гелия при поиске течей

Смазка элементов вакуумных систем стемах многослойных покрытий

Элементы вакуумных систем



© 2025 chem21.info Реклама на сайте