Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натриевые ворота каналы

    При изучении натриевых каналов было показано, что ворота и механизм инактивации расположены в разных участках канала. Фермент пролаза, введенный внутрь гигантского аксона кальмара, откусывает часть натриевого канала, торчащую из мембраны. После такой процедуры канал продолжает открывать ворота под действием деполяризацииг но не инактивируется. Таким образом,, [c.110]

    Проводимость каналов. Воротные токи. Изменение потоков Ма и К ( На и г к) во время потенциала действия (рис. 16.1) обеспечивается двумя типами ионных каналов для Ма и К, проводимость которых по-разному меняется в зависимости от электрического потенциала на мембране. Ма - проводимость быстро нарастает и затем быстро экспоненциально уменьшается. Калиевая проводимость нарастает по 5-образной кривой и за 5 - 6 мс выходит на постоянный уровень. Восстановление натриевой проводимости до исходных значений происходит в 10 раз быстрее, чем калиевой проводимости. Вопрос о том, каким образом проводимость ионных каналов управляется электрическим полем, является одним из центральных в биофизике мембранных процессов. В модели Ходжкина - Хаксли предполагается, что проводимость для ионов Ма и К регулируется некоторыми положительно заряженными управляющими частицами, которые перемешаются в мембране при изменениях электрического поля. Смещение положения этих частиц в мембране зависит от приложенного потенциала и соответствующим образом открывает или закрывает ионный канал. Считается, что в случае калиевой проводимости имеются четыре активирующие канальную проводимость частицы. В случае Ма - канала предполагается наличие трех активирующих частиц, необходимых для открывания, и одной инактивирующей частицы-для закрывания канала. На основе этих предположений удалось построить математическую модель, с высокой точностью воспроизводящую нервный импульс. Главное достижение состоит в разделении трансмембранных токов на отдельные компоненты (г на и г к) и в экспериментальном изучении их свойств. В функциональной структуре канала были выделены элементы, ответственные за механизмы селекции ионов (селективный фильтр), активации (активационные ворота) и инактивации канала (инактивационные ворота) (рис. 16.2). Движение заряженных управляющих частиц в канале (воротных частиц) обнаруживается экспериментально по возникновению воротных токов. Они появляются в результате смещения частиц в мембране под влиянием наложенного на мембрану электрического импульса. Удалось обнаружить воротные токи смещения, связанные с частицами, отрывающими Ма-канал. Вместе с [c.154]


    Ворота ионного канала управляются мембранным потенциалом и могут находиться как в закрытом состоянии (штриховая линия), так и в открытом состоянии (сплошная линия). Нормальное положение ворот натриевого канала - закрытое. Под действием электрического поля увеличивается вероятность открытого состояния, ворота открываются и поток гидратированных ионов получает возможность проходить сквозь селективный фильтр. [c.104]

    Зависимость параметров канала от мембранного потенциала. Ионные каналы нервных волокон чувствительны к мембранному потенциалу, например натриевый и калиевый каналы аксона кальмара. Это проявляется в том, что после начала деполяризации мембраны соответствующие токи начинают изменяться с той или иной кинетикой (рис. 4.2). На языке ионных каналов этот процесс происходит следующим образом. Ион-селективный канал имеет сенсор - некоторый элемент своей конструкции, чувствительный к действию электрического поля (рис. 4.6). При изменении мембранного потенциала меняется величина действующей на него силы, в результате эта часть ионного канала перемещается и меняет вероятность открывания или закрывания ворот - своеобразных заслонок, действующих по закону все или ничего . Экспериментально показано, что под действием деполяризации мембраны увеличивается вероятность перехода натриевого канала в проводящее состояние. Скачок напряжения на мембране, создаваемый при измерениях методом фиксации потенциала (рис. 3.5 и 4.2), приводит к тому, что большое число каналов открывается. Через них проходит больше зарядов, а значит, в среднем, протекает больший ток. Существенно, что процесс роста проводимости канала определяется увеличением вероятности перехода канала в открытое состояние, а не увеличением диаметра открытого канала. Таково современное представление о механизме прохождения тока через одиночный канал. [c.103]

    Электрический потенциал, действующий на ворота , складывается из трансмембранного потенциала и локальных потенциалов, создаваемых заряженными группами вблизи ворот . В число таких заряженных групп входят, по всей видимости, ионы Са +, адсорбированные вблизи входа в натриевый канал. [c.168]

    Токсины морской анемоны. Если ТТХ и STX действуют на максимальную натриевую проводимость gNa и, таким образом, блокируют открытие ворот, то стрекательные клетки морской анемоны содержат яд, который тормозит активацию натриевого канала и оставляет ворота открытыми. Из Anemonia sul ata было выделено три различных токсина, анемонотоксины I, II и III (АТХ I, АТХ II и АТХ III) [19]. Для этих токсинов были установлены структуры построены они из небольших полипептидных цепей, содержащих по 46, 47 и 27 аминокислотных остатков соответственно. АТХ I и АТХ II в высшей степени гомологичны, в то время как АТХ III резко от них отличается. Пространственная структура АТХ I и АТХ II стабилизируется тремя дисульфидными связями, нарушение которых приводит к потере токсичности. [c.148]


    Свойства каналов. Основным вопросом, возникшим после создания модели Ходжкина — Хаксли, было выяснение механизмов регуляции ионной проводимости мембраны. Ходжкин и Хаксли предположили, что проницаемость мембраны для каждого иона обусловлена гипотетическими каналами , позволяющими данному иону свободно проходить через мембрану по градиенту концентрации. Многие исследователи, работающие в данной области, представляют себе такие каналы как поры в мембране. В пользу такого предположения свидетельствуют многочисленные косвенные данные. Однако, поскольку диаметр каналов, согласно подсчетам, должен составлять 3—5 А, они не могут быть обнаружены даже при помощи самых мощных современных электронных микроскопов. Поэтому прямых доказательств существования подобных пор не получено. Напротив, гипотетических представлений о свойствах ионных каналов более чем достаточно. Согласно одному из предположений, вход в натриевый канал расширяется по направлению к внутренней стороне мембраны наподобие воронки. Предполагают также, что в мембране существуют молекулярные ворота , обусловливающие открытие (активацию) и закрытие (инактивацию) натриевого канала. Все эти гипотетические структуры схемати- [c.158]


Смотреть страницы где упоминается термин Натриевые ворота каналы : [c.148]    [c.82]    [c.148]    [c.161]   
Биология Том3 Изд3 (2004) -- [ c.282 , c.283 ]




ПОИСК







© 2024 chem21.info Реклама на сайте