Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парамагнитные ионы и по каждому металлу и лиганду

    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]


    Тгв хТ гВ/дд Относительные вклады каждого типа взаимодействия в общую скорость релаксации зависят от характера связи металл — лиганд, от частоты, на которой ведется наблюдение ЯМР, типа исследуемого ядра, строения и состава комплексной парамагнитной частицы, температуры раствора. При наблюдении на протонах влияние контактного взаимодействия на спин-решеточную релаксацию обычно невелико и членом (1/2"хв)кон в выражении (1.24) обычно пренебрегают. Для ядер лигандов, образующих прямую химическую связь с парамагнитными ионами, например Ф, з С1 и др., вероятность нахождения 5-облака неспаренного электрона на ядрах чрезвычайно высока А в соотношениях (1.18) и (1.19) велико] и в скоростях спин-реше- [c.23]

    Спектры электронного парамагнитного резонанса (ЭПР).Спектры электронного парамагнитного резонанса позволяют получить, пожалуй, самые непосредственные доказательства перекрывания орбиталей металла и лигандов. Природа электронного парамагнитного резонанса кратко описана в предыдущей главе (см. стр. 29). При изучении спектров ЭПР было обнаружено, что во многих случаях вместо единственного сигнала, который должна была дать группа d-электронов, локализованных на атоме металла, наблюдается сложная совокупность многих линий, приведенная на рис. 26.22 для ставшего уже классическим случая иона [Ir lgl . Такую совокупность линий, называемую сверхтонкой структурой, удается удачно объяснить, предположив, что некоторые орбитали иридия и некоторые орбитали координированных с ним ионов хлора перекрываются так, что единственный неспаренный электрон иридия не локализуется на этом ионе, а делокализуется приблизительно по 5% на каждый ион хлора. Сверхтонкая структура спектра ЭПР обусловлена магнитным моментом ядер ионов хлора, а величина сверхтонкого расщепления пропорциональна степени делокалнза- [c.86]

    В которых один неспаренный электрон приходится на каждый атом металла. Предполагается, что это связано с димеризацией комплекса с образованием связи между двумя атомами металла. Уильямс [21 ] отметил, что ё-электроны и с1-орбитали элементов с небольшим числом (З-электронов, по-видимому, легко доступны для лигандов, что в случае соединений Мо(У) приводит к димеризации. Эту склонность к образованию димеров нужно учитывать при обнаружении по спектрам ЭПР низкоспинового состояния восстановленной ксантиноксидазы. Было высказано предположение, что интенсивность спектра ЭПР, соответствующая всего 37% полного содержания молибдена, объясняется существованием равновесия между парамагнитным мономером и диамагнитным димером. В модельных комплексах Мо(У) в водном растворе число неспаренных электронов, обнаруживаемых методом ЭПР, еще меньше (менее 1 %). Отсюда следует, что биологические системы способны стабилизировать мономерные комплексы Мо(У). Специфические эффекты стабилизации могут также регулировать баланс между состояниями окисления. Такая регуляция имеет существенное значение, если молибденсодержащие ферменты эффективно функционируют как электрон-транспортные реагенты, поскольку процессы переноса электрона между молекулами, протекающие с низкими энергиями активации, возможны только в случае подходящих соотношений между окислительно-восстановительными потенциалами компонентов. Данные, полученные Уильямсом и Митчеллом [18], показывают, каким образом достигается регуляция окислительно-восстановительных потенциалов в случае молибдена. Эти авторы обнаружили специфическую стабилизацию Мо(1У) цианид-ионами, повышение устойчивости Мо(У1) по сравнению с Мо(111) при наличии гидроксила в качестве лиганда и примерно одинаковую устойчивость Мо(1П) и Мо(У) в присутствии хлорида и тиоцианата. При нейтральных рн окислительно-восстановительные потенциалы пар Мо(У1)/Мо(У) и Мо(У)/Мо(1П) находятся в интервалах от —0,2 до —0,4 В и от —0,6 до —1,0 В соответственно. Таким образом, первая пара близка по своему окислительно-восстановительному потенциалу к флавиновьш системам (около 0,25 В), тогда как вторая пара имеет потенциал, выходящий за пределы обычных окислительно-восстановительных потенциалов биологических систем. Однако способность меркаптоуксусной кислоты ( около —0,30 В) восстанавливать Мо(У) до Мо(1П) показывает, каким образом окислительно-восстановительный потенциал молибденовой пары может быть смещен в область, в которой протекают биологические реакции, путем преимущественной стабилизации состояния с меньшей степенью окисления ([21], см. также гл. 15). [c.267]



Смотреть страницы где упоминается термин Парамагнитные ионы и по каждому металлу и лиганду: [c.423]    [c.11]    [c.418]   
Быстрые реакции в растворах (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы лигандами

Металлы парамагнитные

Парамагнитные ионы и по каждому металлу и лиганду ионные нары с сульфат-ионо

Парамагнитные ионы и по каждому металлу и лиганду обмен между растворителем

Парамагнитные ионы и по каждому металлу и лиганду образование комплексов

Парамагнитные ионы и по каждому металлу и лиганду окисление перекисью водород

Парамагнитные ионы и по каждому металлу и лиганду сольватированными ионам



© 2025 chem21.info Реклама на сайте