Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетическая рекомбинация также Кроссинговер Рекомбинация

    Легко представить себе, что процесс, изображенный на фиг. 244, обусловливает также генетическую рекомбинацию, происходящую в результате кроссинговера между гомологичными (а не сестринскими) хромосомами в первом делении мейоза (фиг. 11). Иными словами, возможно, что в интерфазе, предшествующей первому делению мейоза, когда молекулы ДНК гомологичных хромосом находятся в растянутой форме и подвергаются репликации, в них происходят разрывы с последующим перекрестным воссоединением фрагментов. В таком случае конъюгация хромосом (т. е. попарное сближение гомологичных хромосом), наблюдаемая в профазе первого деления мейоза, в действительности должна следовать за генетическими обменами хромосомной ДНК, а не предшествовать им. [c.501]


    Присутствие инверсий можно также установить генетически, поскольку они либо полностью подавляют, либо сильно снижают частоту рекомбинаций в гетерозиготах. На рис. 21.15 изображены генетические последствия кроссинговера в организме, гетерозиготном по парацентрической инверсии. Из четырех хромосом, образовавшихся в результате мейотических делений, у одной-центромеры нет вовсе, другая-содержит две центромеры, и две остаются нормальными-те, которых кроссинговер не затронул. [c.44]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]

    Рекомбинационные процессы играют также ведущую роль в эволюции строения геномов в целом. Дело в том, что перестройки генетического материала часто можно объяснить рекомбинацией между гомологичными последовательностя.ми, оказавшимися в негомологичном положении (роль таких последовательностей могут выполнять, например, мобильные генетические элементы см. гл. V). На рис. 81 (см. с. 126) показан один важный частный случай ошибочной рекомбинации — неравный кроссинговер. В результате этого процесса генетический материал одной из гомологичных хромосо.м делегирует, но в другой хро.мосо.ме возникает дупликация. Считается, что такие дупликации играют важную роль в возникновении родственных, но различных генов, поскольку присутствие в геноме лишних копий какого-либо гена позволяет им сравнительно свободно из.ме-няться, что, в принципе, может привести к возникновению новых функций белка — продукта гена. По всей вероятности, это один из путей возникновения мультигенных семейств, характерных для геномов высших эукариот и кодирующих белки со сходными, но различными функциями. [c.109]


    Из этого следует, что как неспособность осуществлять генетические рекомбинации,так и высокая чувствительность к ультрафиолету у мутантов по гену re k обусловлены тем, что в ходе пострепликационной репарации за счет рекомбинации эти мутанты неспособны осуществлять какой-то этап, отличный от репарационной репликации. Схема, изображенная иа фиг. 190, объясняет также сделанное Жакобом и Вольманом в 1955 г. наблюдение, что облучение фагов ультрафиолетом резко уменьшает сцепление генов, выявляемое при генетических скрещиваниях. Действительно, если между двумя генетическими локусами х у окажется нерепарированный димер тиминов, то очевидно, что вероятность d y (см. уравнение ХП.1) возникновения между ними кроссинговера резко возрастет. [c.381]

    Так же, как в рассмотренном случае, сумма меньших частот рекомбинации (генетических расстояний) чаще всего превышает частоту рекомбинации между наиболее удаленными друг от друга маркерами. Это объясняется тем, что между любыми двумя сцепленными генами возможен не только одиночный, но и двойной (а также множественный) кроссинговер, что приводит к сокращению регистрируемой частоты кроссинговера. Действительно, если бы в рассмотренном примере (рис. 5.12) между генами Ь и vg не было бы маркера рг, то Ь(рг ) vg и (рг) vg воспринимались бы как некроссоверные состояния bvgv Ь " vg . Таким образом, двойные обмены сокращают регистрируемое расстояние меж у генами. [c.102]

    Современные представления о молекулярном механизме кроссинговера в основном сложились в 60-е годы нашего столетия. При этом с учетом особенностей молекулярной структуры ДНК как носителя генетической информации более детально разработана гипотеза разрыв — воссоединение . Кроме того, предложенные модели удовлетворительно объясняли те результаты генетического анализа, которые были рассмотрены в предыдущем разделе. Наибольшую известность приобрела модель Р. Холлидэя. Рассмотрим эту схему рекомбинации между двумя из четырех хроматид бивалента (рис. 7.11). На рисунке показана рекомбинация только между двумя хроматидами. Еще две хроматиды остаются интактными, однако при рассмотрении конечного результата — расщепления в тетрадах — их также необходимо учесть. АВС и ab — три тесно сцепленных маркера, судьба которых прослеживается на протяжении всего процесса рекомбинации. Стрелки символизируют антипараллельные цепи ДНК. Для рассматриваемой схемы очень существен учет полярности цепей. [c.160]

    Частота кроссинговера находится под строгим генетическим контролем. Было показано, что кроссинговер не происходит у самцов D. melanogaster, а также у самок тутового шелкопряда. Его частота, как правило, ниже у гетерогаметного пола. Многие хромосомные перестройки (см. гл. 13) снижают частоту кроссинговера. Известны мутации как повышающие, так и снижающие частоту рекомбинации в отдельных участках хромосом у дрозофилы, кукурузы и других организмов. [c.166]

    Большинство перечисленных здесь рекомбинационных механизмов возникновения хромосомных аберраций продемонстрированы в экспериментальной работе с бактериями и дрожжами. Мигрирующие элементы способны захватывать и переносить на новое место гены, рядом с которыми они располагаются. По образному выражению Р. Б. Хесина, попав в плохую компанию, гены из добропорядочных превращаются в бродяг . Тем самым осуществляется дупликация отдельных генов, необходимая для дивергенции генетического материала, т. е. возникновения генов с новыми функциями. Кроме того, повторы одинаковых или сходных участков генетического материала сами по себе создают условия для рекомбинации по гомологии между генами, располагающимися в негомологичных участках генетического материала. Подобная рекомбинация происходит значительно реже, чем полностью гомологичная рекомбинация — кроссинговер, но она также связана с инициирующей рекомбинацию конверсией. Это показано для дрожжей-сахаромицетов, имеющих два одинаковых гена his 3 один на своем месте в хромосоме XY, а другой — внесенный с плазмидой в результате интегративной трансформации (см. гл. 11). Второй ген his 3 был интегрирован в другую часть генома благодаря рекомбинации плазмиды с Ту 1-элементом, который она также несла. С помощью такой модели была продемонстрирована конверсия между негомологичными хромосомами. Аналогичный результат был получен и для разных генов дрожжей с высоким уровнем гомологии нуклеотидных последовательностей сус 1 и сус 7, кодирующих изо-1 и ИЗО-2-ЦИТОхромы С. У другого вида дрожжей негомологичная конверсия показана между генами, кодирующими очень близкие по структуре тРНК. В редких случаях негомологичная конверсия сопровождается реципрокными транслокациями. [c.345]


Смотреть страницы где упоминается термин Генетическая рекомбинация также Кроссинговер Рекомбинация: [c.52]    [c.143]    [c.267]    [c.140]    [c.159]    [c.229]    [c.257]   
Гены (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Рекомбинация



© 2025 chem21.info Реклама на сайте