Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двухцепочечные молекулы нуклеиновых кислот

Рис. 11.1. Строение вируса животных. Геном вируса обычно представлен относительно небольшой молекулой нуклеиновой кислоты (одно- или двухцепочечной ДНК или РНК длиной от 3 до 200 т. п. н.), заключенной в белковый капсид. У некоторых вирусов капсид окружен еще и белковой оболочкой. Рис. 11.1. <a href="/info/889759">Строение вируса</a> животных. <a href="/info/32761">Геном вируса</a> обычно представлен относительно небольшой молекулой нуклеиновой кислоты (одно- или двухцепочечной ДНК или РНК длиной от 3 до 200 т. п. н.), заключенной в белковый капсид. У <a href="/info/1435353">некоторых вирусов</a> капсид окружен еще и белковой оболочкой.

    Противоположная направленность (5 ->3 и 3 ->5 ) цепей в двухцепочечных молекулах нуклеиновых кислот. [c.543]

    Несмотря на все отмеченное сходство, структура двухцепочечных молекул нуклеиновых кислот во многом различается. Эти различия касаются числа пар оснований на виток двойной спирали, угла между парами оснований и осью спирали, угла между плоскостями, в которых лежат основания, диаметра спирали, характера желобков спирали. Некоторые из этих особенностей видны на проволочных моделях, а желобки лучше всего выявляются на объемных моделях, показанных на рис. 3.14. [c.173]

    Геном большинства вирусов представлен или двухцепочечной ДНК, или одноцепочечной РНК, однако у некоторых мелких вирусов ДНК одноцепочечная, а другие содержат двухцепочечную РНК- Число нуклеотидов в вирусном геноме варьирует от нескольких тысяч до нескольких сотен тысяч, а число генов —от 3 до 200 и более. Иногда молекулы нуклеиновой кислоты в вирионе имеют форму замкнутого кольца, в других случаях они линейны. [c.286]

    В приведенной ниже таблице охарактеризованы некоторые известные нам типы вирусов и ряд отдельных вирусов. Форма вирусных частиц обозначена буквами И (икосаэдр) С (спираль) и Сл (более сложная). Для некоторых спиральных вирусов и вирусов с более сложным строением приведена длина частиц в нм. Указана также длина молекулы нуклеиновой кислоты в тысячах оснований (для одноцепочечных ДНК или РНК) или в тысячах нуклеотидных пар (для двухцепочечных нуклеиновых кислот). Число генов, содержащихся в вирусной частице, иногда несколько превышает это число. [c.286]

    Все разнообразные способы сборки вирусов завершаются одинаково упаковкой в капсид единичной молекулы ДНК или РНК. Однако существуют некоторые вирусы, геном которых состоит из многих молекул нуклеиновой кислоты. Реовирусы, например, содержат десять двухцепочечных фрагментов РНК, и все они должны быть упакованы в капсид. О том, каким образом в процессе сборки отбирается по одной копии каждой из разных молекул, для того чтобы собрать полный комплект генетической информации, ничего не известно. [c.347]

    Если двум частично комплементарным цепям плазмидной ДНК дать возможность ренатурировать, то образуются гетеродуплексные молекулы, которые можно исследовать с помощью электронного микроскопа. Поскольку при электронно-микроскопическом анализе в случае соответствующего приготовления образцов одно-и двухцепочечные участки нуклеиновых кислот различаются, существует возможность картирования гомологичных и негомологичных участков. С тех пор как в практику вошли способы проверки с применением рестриктаз и методы выявления гомологий ДНК в растворе по радиоактивности, методология гетеродуплексного анализа с помощью электронного микроскопа перестала широко применяться для анализа плазмидной ДНК- Хотя техника такого анализа требует большого экспериментального искусства и специального оборудования, она все же заслуживает рекомендации как способ точной локализации различий между плазмидами и наилучшей оценки организации плазмидной ДНК- [c.156]


    Дальнейшие исследования [309] показали, что в диапазоне мол. масс от ЫО до 2-10 кольцевые двухцепочечные и кольцевые одноцепочечные молекулы нуклеиновых кислот можно разделить даже в том случае, если они имеют одинаковую молекулярную массу. Полинуклеотиды меньшей молекулярной массы (от 2-10 до 2-10 ) распадаются по подвижности на два класса. Один класс составляют одноцепочечные полинуклеотиды, образовавшиеся в результате диссоциации двухцепочечных молекул, а другой класс — линейные двухцепочечные и природные одноцепочечные полинуклеотиды, такие, как рибосомные РНК [308]. [c.382]

    В бактериальной клетке РНК и белки производятся в цитоплазме, так как у бактерий нет мембраны, окружающей единственную хромосому. Вирусы — паразиты, которые внедряются в клетку и используют ее молекулярный аппарат для собственного размножения. Они очень мелкие, приблизительно в 10-15 раз меньше, чем клетки, и состоят только из белковой оболочки и генома, представленного ДНК- или РНК-молекулой. Вирусы имеют разные формы и размеры, а молекулы нуклеиновых кислот в их геноме могут быть и двухцепочечными, и одноцепочечными, и линейными, и кольцевыми. Вирусам, которые размножаются в бактериальных клетках, дано специальное название — бактериофаги. Некоторые вирусы безвредны, например, эндогенные РНК-ретровирусы, которые закодированы в геноме нормальных клеток (в виде ДНК) и продуцируются (в виде РНК-транскриптов) нормальной клеткой, например, стимулированным антигеном В-лимфоцитом (см. рис. 1.2). [c.43]

    Необычайный интерес в последние годы вызвали РНК-содержащие онкогенные вирусы. Большинство исследователей, занимающиеся биохимической генетикой и функциями нуклеиновых кислот, считали, что ДНК образуется только за счет репликации других молекул ДНК- Если транскрибирование РНК с ДНК может протекать свободно, то обратный процесс, а именно образование ДНК на РНК-матрице, считался маловероятным. Большой неожиданностью поэтому оказалось обнаружение во многих онкогенных РНК-содержащих вирусах, и в том числе в вирусах, вызывающих у животных лейкоз, РНК-зави-симой ДНК-полимеразы (т.е. обратной транскриптазы). Этот фермент обнаруживается в зрелых вирусных частицах. Наиболее тщательно очищенный фермент вирусов миелобластоза птиц состоит из двух белковых субъединиц, имеющих мол. вес ПО ООО и 70 000, и содержит два атома связанного Zn +. Для функционирования фермента необходима короткая затравка и матричная цепь РНК. При этом сначала получается гибрид ДНК—РНК, из которого затем (вероятно, после гидролитического расщепления цепи РНК под действием РНКазы Н, разд. Д, 5, в) получается двухцепочечная ДНК. Таким образом, заражение РНК-содержащими вирусами сопровождается образованием [c.288]

    ПЛАЗМИДА, внехромосомный самовоспроизводящийся генетич. элемент (фактор наследственности) бактерий и нек-рых др. организмов. Представляет собой кольцевую двухцепочечную молекулу ДНК, закрученную в суперспираль (см. Нуклеиновые кислоты). Размеры П. необычайно широко варьируют-от 2 тыс. до неск. сотен тысяч пар оснований нек-рые из них содержат 1-3 гена, другие достигают 10-20% размера бактериальной хромосомы. [c.552]

    Чтобы определить относительную молекулярную массу разделенных фрагментов, одновременно проводят электрофорез маркерных макромолекул с известными молекулярными массами. Набор маркеров должен охватывать весь диапазон молекулярных масс в данной системе. Образец маркерных молекул вносят в отдельную лунку, расположенную вблизи одного из краев пластинки (или в две лунки у двух разных краев). Логарифм относительной молекулярной массы маркера линейно связан с его электрофоретической подвижностью Rf — величиной, равной отношению расстояний, пройденных маркерной молекулой и красителем (фронтом растворителя). Построив график зависимости логарифма относительных молекулярных масс маркеров от Кр можно найти относительную молекулярную массу каждого компонента образца. Относительная мол. масса белков измеряется в Дальтонах, двухцепочечных нуклеиновых кислот — в числе пар нуклеотидов, одноцепочечных — в числе нуклеотидов. [c.54]

    В процессе изучения нуклеиновых кислот методом электрофореза выяснилось, что на их электрофоретическую подвижность сильно влияет конформация. Фишер и Дингман [384] отметили, что подвижность полинуклеотидов при электрофорезе зависит не только от их размеров, но также от температуры и напряжения, при которых проводится разделение. Они обнаружили также, что поведение одноцепочечных и двухцепочечных молекул нуклеиновых кислот при электрофорезе сильно различается. В то время как для одноцепочечных РНК значение Кт на графиках Фергюсона является функцией молекулярной массы, для двухцепочечных молекул эта величина очень мало зависит от молекулярной массы. Авторы пришли к выводу, что двухцепочечные молекулы мигрируют в геле концом вперед, т. е. в таком положении, при котором лобовое сопротивление невелико. Аналогичные результаты были получены и в другой работе [533] (рис. 124). Недавно Лишанская и Мазовицкий [c.390]

    Реакция бисульфита с одноцепочечными нуклеиновыми кислотами протекает значительно медленнее, чем с мономерами, и практически не идет с двухцепочечными молекулами. [c.385]


    Необходимо отметить, что химия нуклеиновых кислот, как и всякая химия высокомолекулярных веществ, имеет ряд существен ных отличий от химии соответствующих мономерных компонентов. Уже нуклеозиды и нуклеотиды являются полифункциональными соединениями, хотя различие в реакционной способности определенных группировок, входящих в состав четырех обычных типов нуклеотидных звеньев, сравнительно невелико. Полинуклеотиды представляют собой гигантские молекулы с множеством реакционных центров. Особые сложности в химию нуклеиновых кислот вносят следующие обстоятельства. Реакционная способность отдельных группировок в нуклеотидных звеньях зависит не только от условий реакции (растворителя, pH, температуры и т. д.), но и от наличия и характера взаимодействия отдельных звеньев друг с другом (в одной и той же цепи и на комплементарном участке в двухспиральных двухцепочечных молекулах), а также взаимодействия с молекулами белков, ионами металлов и т. д. Все эти взаимодействия, как правило, кооперативны, т. е. нелинейно изменяются при изменении условий реакции. Модификация одного из звеньев полинуклеотидной цепи приводит к изменению характера и силы взаимодействия этого звена с соседними звеньями (или с молекулой белка в случае нуклеопротеидов), что в конечном счете сказывается на реакционной способности звеньев на обширных участках полинуклеотидной цепи. [c.15]

    Под редупликацией ДНК понимают образование из одной молекулы ДНК двух тождественных двухцепочечных молекул. Репликация — образование молекулы одноцепочечной нуклеиновой кислоты (реплики) на комплементарной ей одноцепочечной молекуле [матрице). [c.420]

    Еще одно уточнение семантического характера термины молекула и молекулярный вес употребляются здесь лишь применительно к комнонентам, связанным друг с другом ковалентными связями. Вирусная частица, таким образом,— это отнюдь не молекула, а в самых простых случаях агрегат многих белковых молекул с одной молекулой одноцепочечной нуклеиновой кислоты. Капсомер — это агрегат белковых молекул, и характеризуется он не молекулярным весом, а весом частицы. Что же касается определения комплементарных цепей двухцепочечной ДНК, то оно вызывает затруднение. Для этого необычайно специфичного агрегата молекул здесь используется термин двойная молекула или просто молекула. [c.25]

    Но бывает и так, что вирусная нуклеиновая кислота ведет себя как гомогенная и все же представляет собой агрегат из нескольких молекул. Если в двухцепочечной нуклеиновой кислоте произойдет несколько разрывов в отдельных цепях, то на физических свойствах молекулы это практически пе отразится. Объясняется это тем, что вторичные связи способны придавать нуклеиновой кислоте видимость несуществующей гомогенности и целостности. Поэтому до тех пор, пока не будут исключены эффекты межмолекулярных водородных связей и солевых мостиков (что достигается либо удалением солей, либо нагреванием, либо обработкой диметилсульфоксидом), нельзя делать никаких заключений о молекулярном весе нуклеиновой кислоты и о ее гомогенности в строгом химическом смысле. [c.110]

    Главное положение, по которому происходит алкилирование аденина (N-1), и единственное положение, по которому происходит алкилирование пиримидинов (N-3), локализованы в тех участках молекулы, которые вовлекаются в образование комплементарных пар. Поэтому эти реакции, по-видимому, идут лишь в одноцепочечных нуклеиновых кислотах и при этом вызывают инактивацию. Подытожив все эти данные, можно прийти к выводу, что обработка двухцепочечных нуклеиновых кислот алкилирующими агентами в условиях, препятствующих денатурации, должна вызывать редкие мутации на фоне еще [c.200]

    Для инактивации вирусов часто используют ультрафиолетовое излучение [328]. Белки ноглош ают УФ-лучи в меньшей степени, чем нуклеиновые кислоты, и поэтому гораздо более устойчивы к их действию. Инактивации подвержены как одноцепочечные, так и двухцепочечные нуклеиновые кислоты. Но мутагенный эффект обычно невелик. Первое, что происходит при интенсивном воздействии ультрафиолетовыми лучами,— это присоединение молекулы воды по 5,6-двойной связи пиримидинов. Реакция эта обратима, причем легкость протекания обратной реакции зависит от типа пиримидинового основания [c.202]

    Некоторые линейные нуклеиновые кислоты вирусов содержат белки, ковалентно связанные с 5 -концевым основанием. Наиболее хорошо изучены ДНК аденовирусов, фага ф29 и РНК полиовируса. ДНК аденовирусов представляет собой большую линейную двухцепочечную молекулу оба ее 5 -конца ковалентно связаны с белком, имеющим мол. массу 55000 дальтон. Соединение осуществляется с помощью фосфодиэфирной связи с серином (рис. 33.11). Тот же тип организации установлен в ДНК вируса ф29, где к каждому из 5 -концов прикреплен белок с мол. массой 27 ООО дальтон. У полиовируса, содержащего одноцепочечную РНК, белок VPg из 22 аминокислот сцеплен через гидроксильную группу тирозина с 5 -концевым основанием. В каждом случае прикрепляемый белок кодируется вирусом и участвует в репликации. [c.429]

    Для начала, чтобы легче-было ориентироваться, ознакомимся бегло с природой, функцией и местами локализации основных классов нуклеиновых кислот внутри клеток. ДНК-это чрезвычайно длинные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономерных единиц - дезоксириб ону-клеотидов четырех разных типов, образующих характерные для каждого организма специфические последовательности. Молекулы ДНК обычно состоят из двух цепей. Хромосома прокариотических клеток представляет собой одну очень длинную двухцепочечную молекулу ДНК, собранную в компактное ядерное образование-нуклеоид. Напомним, что у прокариот генетический материал не окружен мембраной (разд. 2.4). [c.853]

    Третичная структура ДНК. В частицах вирусов, клетках бактерий и высших организмов молекулы ДНК плотно упакованы и образуют довольно сложные структуры. Например, в хромосоме . соН содержится молекула ДНК длиной более 1 мм, хотя длина самой клетки не превышает 5 мкм. Вирусную ДНК можно отнести к сравнительно мелким полимерным биомолекулам, но если ее вытянуть, то она окажется во много раз длиннее, чем сам вирус. Сопоставление среднего диаметра молекулы гемоглобина (65 А), длины молекулы одного из самых длинных белков — коллагена (3000 А) с длиной молекулы ДНК подчеркивает огромные размеры молекул нуклеиновых кислот. Для измерения длины молекул нуклеиновых кислот в биохимии введена специальная единица длины, равная 1000 пар нуклеотидов в случае двухцепочечных молекул нуклеиновых кислот — т. н. н. или кЬ (от англ. kilobase — тысяча) либо 1000 нуклеотидов в случае одноцепочечных молекул — т.н. или кЬ. Так, участок длины одноцепочечной ДНК величиной в 1 кЬ имеет контурную длину 0,34 мкм и массу около 660 ООО. [c.276]

    Для измерения длин молекул нуклеиновых кислот применяется единица длины, равная 1000 пар нуклеотидов в случае двухцепочечных молекул нуклеиновых кислот (т.п.н., или кЬ - от англ. к11оЬазе) или 1000 нуклеотидов в случае одноцепочечных молекул (т.н., или кЬ). 1 кЬ двухцепочечной ДНК имеет контурную длину 0,34 мкм и массу примерно 660 кДа. [c.19]

    Однако наиболее широкое применение находят сравнительно короткие олигонуклеотиды. Для того чтобы придать фрагменту нуклеиновой кислоты необходимые для встраивания в определенный участок векторной молекулы липкие концы, синтезируются так называемые линкеры, т. е. двухцепочечные олигонуклеотиды, содержащие последовательность, расщепляемую той или иной рестрикционной эндонуклеазой. Обычно в качестве линкеров применяются самокомплементарные олигонуклеотиды длиной 8—10 нуклеотидных звеньев. На рисунке 213 демонстрируются некоторые типы линкеров. [c.377]

    Денатурация и ренативация ДНК. Гибридизация ДНК — ДНК и ДНК — РНК. Двухцепочечные структуры ДНК при нагревании, экстремальных значениях pH, обработке мочевиной могут переходить в форму неупорядоченных клубков — денатурироваться. Молекулы нуклеиновых кислот максимально поглощают ультрафиолет при 260 нм за счет поглощения азотистых оснований. Раствор нативной ДНК имеет при 260 нм оптическую плотность на 40% ниже оптической плотности смеси нуклеотидов —. гиперхромный эффект. Поэтому о денатурации ДНК судят по увеличению Е250- При нагревании поглощение при 260 нм возрастает в узком диапазоне температур (точка плавления 80—85 °С). Денатурация обратима, если остались спирализованные участки ДНК. Восстановление структуры ДНК после удаления денатурирующего фактора (за счет комплементарного спаривания оснований нуклеотидов) называется ренативацией ДНК. На явлении денатурации ренативации основан метод гибридизации. [c.295]

    Целый ряд флуоресцирующих молекул обладает очень интересным свойством в водных растворах наблюдается практически полное тущение их флуоресценции, зато в неполярном или жестком окружении интенсивность флуоресценции существенно возрастает (в 20 и более раз). Если флуоресцентная метка связывается с жестким или неполярным участком молекулы белка или нуклеиновой кислоты, то спектр флуоресценции определяется в основном меткой, находящейся в связанном состоянии. На рис. 8.17 приведен типичный пример такого рода. В случае белков среди меток, чувствительных к окружению, чаще всего используется краситель 8-анилинонафтилсульфонат, для нуклеиновых кислот такой меткой является этидий. В водных растворах этот краситель флуоресцирует очень слабо, но при встраивании в двухцепочечные участки нуклеиновых кислот интенсивность его флуоресценции резко возрастает. При фиксированной суммарной концентрации флуоресцентной метки изменение числа центров связывания или прочности связи приводит к существенным изменениям в наблюдаемой флуоресценции, что позволяет проводить прецизионные исследования разнообразных интересных явлений. [c.96]

    На основании рентгеноструктурного анализа и ранее полученных данных о строении нуклеотидов и нуклеиновых кислот Уотсон и Крик предложили для ДНК структурную модель, согласно которой макромолекула ДНК имеет форму спирали, причем в спираль закручены одновременно две молекулы ДНК (двухцепочечная спиральная структура). Эта двойная спираль имеет одну общую ось и построена так, что основания обеих цепей расположены внутри спирали, а углеводные остатки с фосфатными группами — снаружи спирали (рис. 51, 52). При этом основания одной молекулярной цепи с основаниями другой цепи образуют строго фиксированные пары, соединенные друг с другом водородными связями. Симметричное построение спирали требует постоянства межспиральных расстояний, а это возможно лишь в том случае, если размеры пар оснований, расположенных друг против друга, будут одинаковыми. Такому условию отвечают пары, построенные из одного пуринового и одного пиримидинового основания аденин — тимин и цитозин — гуанин, что обеспечивает и максимальное число водородных связей в спирали  [c.362]

    Данные о структуре тРНК свидетельствуют о том, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской структуры клеверного листа большой компактностью за счет складывания различных частей молекулы. Следует указать на существование у ряда вирусов (реовирус, вирус раневых опухолей растений и др.) природных двухцепочечных РНК, обладающих однотипной с ДНК структурой. При физиологических значениях pH среды, ионной силы и температуры создаются условия для образования в одноцепочечных матричных и рибосомных РНК множества участков с двойной спиралью ( шпильки ) и дальнейшего формирования комплементарных участков, определяющих в известной степени жесткость их третичной структуры (рис. 3.4). В настоящее время получены доказательства значимости ван-дер-ваальсовых (диполь-дипольных и лондоновских) связей между азотистыми основаниями в стабилизации общей пространственной конфигурации нуклеиновых кислот. [c.113]

    КОМПЛЕМЕНТАРНОСТЬ, структурное соответствие. двух цепей нуклеиновых к-т, при к-ром аденину и гуанину в одной цепи соответствуют тимин (или урацил.) и-цитозин в другой (см. рис. 3 в сг. Нуклеиновые кислоты). Эти основания взаимод. друг с другом посредством- водородных связей между кето- и аминогруппами, так что образующчеся пары геометрически одинаковы. Специфич. спаривание оснований приводит к двухцепочечной структуре.ауклёиновой к-ты с антилараллельными цепями (двойная. спираЛь). Комплементарные участки могут встречаться- в составе одной цепи нуклеиновой к-ты, что может приводить к образованию внутримол. дуплексных структур. В более широком смысле К.— структурное соответствие любых молекул или участков молекул, обусловливающее образование специфич. комплексов, напр, фермент — субстрат, антиген — антитело. [c.270]

    Реально это осуществляется следующим образом двухцепочечная структура ДНК раскручивается, цепи разделяются, так как это было описано в случае удвоения молекул ДНК (см, стр,59), и одиночная цепь ДНК начинает комплектарно присоединять к себе свободные рибонуклеотиды из окружающей среды. Тогда действительно расположение пуклеотидов у вновь образующейся цепи информационной РНК будет полностью соответствовать их расположепию в ДНК (в этом и состоит матричный механизм передачи особенностей химической структуры нуклеиновых кислот). Здесь [c.85]

    Известны три типа двухцепочечных кольцевых ДНК- Первый из них — ковалентно замкнутая кольцевая ДНК. Такие ДНК имеют сравнительно небольшой молекулярный вес.Примером указанных ДНК служат нуклеиновые кислоты вирусов полиомы и ЗУ 40, репликативная форма ДНК бактериофага ФХ174 В их молекулах обе полинуклеотидные цепи не имеют ни единого разрыва, поэтому любое изменение вторичной структуры, связанное с изменением количества остатков на один виток спирали, влечет за собой перестройку третичного строения ДНК. [c.47]

    Концевые по1т<фяющиеся последовательности—структурная особенность нуклеиновых кислот некоторых вирусов и бактериофагов. ДНК с такой особенностью строения обнаружена в составе многих вирусов, бактерисфгов Т2, Т4, ТЗ. Т7 и Р22. Например,бактериофаг 17 характеризуется двухцепочечной линейной ДНК, в которой начальный участок нуклеотидной последовательности (0,7% всей последовательности нуклеотидов) повторяется на противоположном крице молекулы. Ферментативное отщепление повторяющихся нуклеотидных последовательностей, на обоих концах молекулы ведет к образованию липких концов, которые в необходимых условиях обеспечивают образование кольцевых структур. [c.57]

    Концевая избыточность ДНК Т-четных фагов значительно облегчила изучение родственных уз , а также структурных особенностей разнообразных фаговых нуклеиновых кислот. Как было отмечено ранее, экзонуклеаза III из Е. oli катализирует последовательное расщепление ДНК, начиная с З -конца каждой цепи двойной спирали. В результате образуются отрезки, содержащие 5 -конец. При наличии концевой избыточности на обоих концах двухцепочечной молекулы должны иметься одинаковые последовательности. Тогда ферментативное воздействие приведет к образованию комплементарных одноцепочечных отрезков или липких концов, способных сплавляться друг с другом, образуя кольца. Эта реакция, следовательно, может быть использована в качестве теста на концевую избыточность. При электронно-микроскопическом или седиментационном анализе такого материала были обнаружены многочисленные кольцевые молекулы, что убедительно продемонстрировало существование кольцевой избыточности (фиг. 29, А — С) [304]. [c.126]

    Случаи, когда у изолированных нуклеиновых кислот не удается обнаружить инфекционности, можно объяснить двумя основными причинами. Во-первых, вполне возможно, что молекулы РНК и ДНК с молекулярным весом от 6-10 до 200-10 , примерами которых могут служить PFIK вируса ньюкаслской болезни (молекулярный вес 6-10 ), ДНК аденовирусов (молекулярный вес 22-10 ) и Д11К вируса осповакцины (180-10 ) не способны проникнуть в клетку в интактном состоянии без помощи защитного капсида или наружной оболочки вируса. Во-вторых, как теперь известно, РНК некоторых других вирусов, содержащаяся в них в меньшем количестве, состоит из нескольких молекул. В этом случае вероятность проникновения в клетку-хозяина полного набора генетических компонентов, лишенных преимуществ специфической упаковки, сводится, должно быть, к минимуму. Возможно, что этим и объясняется отсутствие инфекционности у РНК вируса гриппа (вероятно, 6 компонентов с общим молекулярньш весом 3-10 ), у РНК вируса саркомы Рауса (3 компонента, каждый с молекулярным весом около 3-10 ) и у РНК реовируса (10 двухцепочечных компонентов с общим молекулярным весом 14-10 ). [c.173]

    Было показано также, что в процессе экстрагирования вирусных нуклеиновых кислот и отделения их от белка может происходить комплексирование в действительности одноценочечных комплементарных молекул, так что обнаруживаемая двухцепочечность может быть на деле артефактом, связанным с фенольным или детергентным методами выделения внутриклеточной РНК. Были получены данные в пользу гипотезы, что матричная (—)-цень удерживается в комплексе с возникающей (4-)-цепью в основном не за счет спаривания оснований, а каким-то менее жестким способом, возможно с помощью молекул репликазы [117, 549]. Именно выраженной способностью образующейся РНК действовать в качестве информационной РНК и связываться с рибосомами, может быть, и объясняется быстрое снятие этой цепи с матрицы. Наряду с этими данными, однако, в последнее время были получены новые данные о существовании РФ- и РПФ-форм РНК у фагов и вирусов растений [25, 46, 221]. Проведенный недавно анализ образующихся 5 -концевых групп [c.241]

    Г оворя о молекулярном уровне организации таких систем, следует отметить участие в них ферментов, обладающих замечательными свойствами узнавать последовательности или структурные особенности ДНК. Ферменты рестрикции связываются со специфическими последовательностями ДНК, что дает нам дополнительную информацию о природе взаимодействия белков с нуклеиновыми кислотами. Некоторые рестриктазы связываются с ДНК в одном сайте, а разрезание производят в другом, достаточно удаленном это свидетельствует о способности белков перемещаться вдоль двухцепочечной ДНК. По-видимому, репарирующие ферменты узнают поврежденные сайты в ДНК из-за искажения в этом участке молекулы правильной структуры. Ферменты, участвующие в рекомбинации, могут связывать две молекулы ДНК, стимулируя спаривание между ними. [c.431]


Смотреть страницы где упоминается термин Двухцепочечные молекулы нуклеиновых кислот : [c.144]    [c.154]    [c.382]    [c.20]    [c.233]    [c.51]    [c.568]    [c.50]    [c.504]    [c.33]    [c.600]    [c.178]    [c.36]   
Электрофорез в разделении биологических макромолекул (1982) -- [ c.184 , c.370 , c.381 , c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте