Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кроссинговер между ДНК-маркерами

Рис. 5.13. Наблюдение за первым и вторым расхождением аллелей в мейозе по положению каждого генотипа в аске. Аскоспоры гаплоидны, и по их фенотипу можно однозначно судить о их генотипе. Кроссинговер между центромерой и Аа приводит во втором делении к попарной сегрегации маркеров. Кроссинговер между Аа и ВЬ приводит в первом делении к расхождению проксимальных маркеров (Аа), а во втором делении-к расхождению дистальных маркеров (ВЬ). В последнем случае в зависимости от Рис. 5.13. Наблюдение за первым и вторым расхождением аллелей в мейозе по положению каждого генотипа в аске. Аскоспоры гаплоидны, и по их фенотипу можно однозначно судить о их генотипе. Кроссинговер между центромерой и Аа приводит во <a href="/info/1355105">втором делении</a> к попарной сегрегации маркеров. Кроссинговер между Аа и ВЬ приводит в <a href="/info/700590">первом делении</a> к расхождению проксимальных маркеров (Аа), а во <a href="/info/1355105">втором делении</a>-к расхождению дистальных маркеров (ВЬ). В последнем случае в зависимости от

    Наследование локуса, ответственного за заболевание, можно проследить более строго, используя фланкирующие маркеры. Бели между маркерами, расположенными по обе стороны от предполагаемого локуса, ответственного за болезнь, рекомбинация не наблюдается, можно быть уверенным, что данный локус, расположенный между ними, наследовался совместно с этими маркерами (если не учитывать малую вероятность того, что мог произойти двойной кроссинговер). В действительности, в генетике давно уже считается, что анализ по таким тройным перекрестам много точнее, чем по двойным. Повышенная точность упрощает процедуру принятия или отклонения гипотезы, и таким образом, уменьшает [c.219]

    Многочисленные опыты по Р1-трансдукции большого числа генов, ранее нанесенных на карту хромосомы Е. соН, на основе данных о рекомбинации при конъюгации показали, что сцепление двух генов на бактериальной хромосоме может быть установлено по относительной частоте их совместной трансдукции. Чем выше эта частота, тем больше сцепление. Это вполне естественно, так как чем ближе расположены два гена, тем больше вероятность того, что они окажутся в одном и том же фрагменте, вырезанном из генома бактерии (и составляющем от него 3%), и попадут, следовательно, в одну и ту же трансдуцирующую частицу. Если, однако, проследить за трансдукцией генетических маркеров, настолько тесно сцепленных, что они почти неизбежно должны попасть в одну и ту же частицу фага, то мы убедимся в том, что все-таки не всегда бактерия-трансдуктант несет одновременно оба таких маркера. Это расщепление по очень тесно сцепленным маркерам, происходящее при трансдукции, несомненно, отражает характер процесса генетической рекомбинации, в результате которого трансдуцированные локусы донорного генома включаются в геном клетки-реципиента. Как видно из фиг. 178, для каждого акта интеграции необходимо два кроссинговера. Отсюда следует, что два тесно сцепленных генетических маркера донора, введенные в клетку-реципиент, могут попасть в один и тот же рекомбинантный геном только в том случае, если ни один из этих двух необходимых перекрестов не произойдет между ними. Вероятность того, что такой кроссинговер не произойдет между двумя маркерами, возрастает с увеличением их сцепления. Следовательно, по частоте совместной трансдукции можно судить о расстоянии, разделяющем два очень тесно сцепленных локуса. Таким образом, изучение совместной трансдукции позволяет выявить тонкую структуру небольших фрагментов бактериальной хромосомы. [c.358]

    В частично диплоидной клетке рекомбинация может происходить между генами бактерии, входящими в состав F -элемента, и генами гомологичного участка бактериальной хромосомы. Единичный кроссинговер приводит к включению F -элемента в бактериальную хромосому и образованию клетки типа Hfr с дупликацией генов, содержащихся в F -элементе. Двойной кроссинговер приводит к образованию клетки F -типа, в которой произошел обмен маркерами между бактериальной хромосомой и F -элементом. [c.241]


    ОТ отца, а другая-от матери. П )и нормальном митотическом делении материнская и отцовская хромосомы не обмениваются генетическим материалом, и поэтому каждая из дочерних клеток получает от родителей полный ин-такгный набор отцовских генов и такой же набор материнских. В норме обмен генами между материнским и отцовским гомологами происходит только в половых клетках при кроссинговере во время мейоза. Иногда, однако, кроссинговер между гомологами происходит и при делении обычных соматических клеток. Это называют митотической рекомбинацшей. Если материнская и отцовская хромосомы обмениваются идентичными участками, т.е. если клетка по этим участкам гомозиготна, то такой обмен остается незамеченным. Но если обмениваться будут участки, по которым клетка гетерозиготна, то может возникнуть выраженный фенотипический эффект. В результате рекомбинации могут, например, появиться дочерние клетки, имеющие различную пигментацию, и тогда при дальнейшем размножении эти клетки образуют участки ткани разного цвета. Механизм этого иллюстрируют схемы на рис. 15-33, где показано, как после единичного акта митотической рекомбинации на фоне нормальных клеток может появиться двойное пятно, образованное двумя клонами клеток с различными генетическими маркерами. [c.83]

    При рекомбинации получается клетка, использующая структуру верхней, т. е. материнской, хромосомы в левой ее части и нижней, т. е. отцовской, в правой части. Как происходит это явление Один мыслимый механизм — это так называемый крос-сипговер, т. е. обмен участками хромосомы с разрывом обеих в какой-то точке О, лежащей в промежутке между маркерами Ь и 5т (рис. 101). Зигота подвергается расщеплению, т. е. клетка делится с образованием гаплоидных клеток. Что это должны быть за клетки Одна из них имела бы свойства Ь+8ш , т. е. искомый рекомбинант, другая была бы Ь 8т . Кроссинговер — механизм, доказаниы для высших организмов, размножающихся половым путем. [c.307]

    На рис. 8.19 схематически изображены кроссинговеры, приводящие к возникновению рекомбинантов, полученных в экспериментах 1 и 2 из таблицы 8.5. Выбор одной из двух возможных последовательностей генов основывается на следующих рассуждениях 1) чем ближе неселективный маркер к селективным, тем меньще частота неселективного кроссинговера между ними 2) четырехкратный кроссинговер происходит реже, чем двойной. Таким образом, поскольку в первом из изображенных на рис. 8.19 эксперименте генотип обнаруживается чаще, чем С А, то гены расположены в последовательности Е-С-А. Правильность такой последовательности подтверждается ре-ципрокным скрещиванием (эксперимент 2), в котором тоже наиболее часто встречается генотип ЕС А . [c.254]

    Между КРГР-сайтами данного локуса часто обнаруживают неравновесие по сцеплению. Поскольку эти сайты очень тесно сцеплены, кроссинговер между ними очень редок, и пройдет немало поколений, прежде чем будет достигнуто равновесие по сцеплению. Кроме того, современные данные свидетельствуют о том, что уровни рекомбинации в пределах тесно сцепленных КРГР-маркеров могут сильно варьировать, т.е., по-видимому, существуют горячие и холодные сайты рекомбинации [1097, 1959]. [c.205]

    Данные о ПДРФ ее семьи (рис. П.8.7), свидетельствуют о том, что эта женщина (III, 2) унаследовала нормальную Х-хромосому (В2) от матери, хотя наблюдаемая картина могла быть следствием кроссинговера. С учетом расстояния между маркером и соответствующим геном ее шанс быть носителем (если основываться лишь на информации о ПДРФ) составляет 15%, т.е. шанс кроссовера. Объединение всей информации снижает риск носительства для нее до 1,4%, а риск иметь пораженного сына до 0,7%. [c.240]

    В этой главе была рассмотрена рекомбинация сцепленных маркеров, или кроссинговер между гомологичными хромосомами. Классический кроссинговер и конверсия как отражение событий, инициирующих реципрокную рекомбинацию, — не единственный способ обмена участками генетического материала. Для других типов рекомбинации, вовлекающих участки не гомологичные по локализации в пределах одной или даже разных хромосом (см. гл. 13), обычно необходимы достаточно протяженные одинаковые или очень сходные нуклеотидные последовательности в ДНК. С этой точки зрения рекомбинация почти всегда гомологична. Тем не менее существуют механизмы и негомологичной в строгом смысле рекомбинации (гл. 13). Еще один механизм — сайт-специфической рекомбинации — будет рассмотрен в гл. 9. При этом типе рекомбинации протяженной гомологии не требуется. [c.167]

    Теперь доказано, что кроссинговер генетического материала вирусов, лежащий в основе этих явлений, может наблюдаться и действительно наблюдается до тех пор, пока в инфицированной клетке присутствует свободная ДНК, принадлежащая потомству двух фаговых линий. Частота появления специфических рекомбинантов слуншт мерой физического расстояния между соответствующими генами в молекуле ДНК. Именно на этой особенности и основано составление генетических карт. Как можно было и предвидеть, чем дальше отстоят друг от друга генетические маркеры, тем чаще они рекомбинируют. Исключения, обнаруженные в случае Т-четных фагов, послужили первыми указаниями на кольцевой характер генетической (названной так в отличие от физической) карты этих вирусов (см. гл. VI, разд. Г) [109[. [c.212]

    Если два генетических маркера находятся в разных хромосомах, го сцепление между ними отсутствует, т. е. шансы на их совместную передачу потомству равны 50 50. То же справедливо и в отпошепии маркеров, локализующихся на противоположных концах одной и той же хромосомы, из-за большой вероятности их разделения в результате кроссинговера, частота которого в процессе мейоза, при образовании яйцеклеток и сперматозоидов, весьма высока (см. разд. 15.2.3). Чем ближе друг к другу два маркера в пределах одной хромосомы, тем больше вероятность того, что они не будут разделены кроссинговером, а значит, будут переданы потомству совместно. Проведя скрининг больших семейных групп на совместное наследование интересующего нас гена (например, гена, ответственного за какую-нибудь болезнь) и большого числа отдельных ПДРФ-маркеров, можно идентифицировать несколько ПДРФ-маркеров, окружающих данный ген. Таким путем удается локализовать последовательности ДНК, находящиеся поблизости от этого геиа, а в конце концов и ДНК, соответствующую самому этому гену (рис. 5-91). Этот метод используется для локализации многих генов, ответственных за болезни человека. После выделения такого гена можно подвергнуть детальному анализу его белковый продукт (см. разд. 4.6.12). [c.342]


    Интеграция — результат рекомбинации между гомологичными последовательностями плазмидной ДНК и хромосомы клетки-хозяина. Интегрированная копия плазмидного вектора оказывается фланкированной прямыми повторами дупликации подвергается участок взаимной гомологии плазмидной и хромосомной ДНК- Рис. 7.2 иллюстрирует рекомбинационные события в области гена leu ine 2. У многих трансформантов наблюдается множественная интеграция плазмид в виде тандемно повторяющихся копий (рис. 7.2). Часть интегративных рекомбинационных событий происходит как двойной кроссинговер. Эта схема может привести к замещению участка хромосомной ДНК на гомологичный участок плазмидной ДНК без интеграции векторной части рекомбинантной плазмиды. Интеграция может произойти Б любом месте генома при условии, что в этом месте находится последовательность, гомологичная участку плазмидной ДНК-Единственное исключение составляет геномный сайт плазмидного селективного маркера. [c.213]

    Так же, как в рассмотренном случае, сумма меньших частот рекомбинации (генетических расстояний) чаще всего превышает частоту рекомбинации между наиболее удаленными друг от друга маркерами. Это объясняется тем, что между любыми двумя сцепленными генами возможен не только одиночный, но и двойной (а также множественный) кроссинговер, что приводит к сокращению регистрируемой частоты кроссинговера. Действительно, если бы в рассмотренном примере (рис. 5.12) между генами Ь и vg не было бы маркера рг, то Ь(рг ) vg и (рг) vg воспринимались бы как некроссоверные состояния bvgv Ь " vg . Таким образом, двойные обмены сокращают регистрируемое расстояние меж у генами. [c.102]

    Современные представления о молекулярном механизме кроссинговера в основном сложились в 60-е годы нашего столетия. При этом с учетом особенностей молекулярной структуры ДНК как носителя генетической информации более детально разработана гипотеза разрыв — воссоединение . Кроме того, предложенные модели удовлетворительно объясняли те результаты генетического анализа, которые были рассмотрены в предыдущем разделе. Наибольшую известность приобрела модель Р. Холлидэя. Рассмотрим эту схему рекомбинации между двумя из четырех хроматид бивалента (рис. 7.11). На рисунке показана рекомбинация только между двумя хроматидами. Еще две хроматиды остаются интактными, однако при рассмотрении конечного результата — расщепления в тетрадах — их также необходимо учесть. АВС и ab — три тесно сцепленных маркера, судьба которых прослеживается на протяжении всего процесса рекомбинации. Стрелки символизируют антипараллельные цепи ДНК. Для рассматриваемой схемы очень существен учет полярности цепей. [c.160]

    Эту путаницу между эффектами аллоферментного маркера и всей хромосомы не удается разрешить, используя две или три хромосомы каждого типа в качестве основного материала. Так же мало поможет получение рекомбинантов между двумя линиями или возвратные скрещивания их с любой из исходных линий в течение ряда поколений. Для того чтобы разрушить первоначальную ассоциацию локусов, требуется гораздо больше времени, чем это обычно кажется. Допустим, ген расположен на расстоянии г сантиморганид от маркерного локуса. Ассоциация р между двумя локусами будет ослабевать экспоненциально, и у дрозофилы при отсутствии кроссинговера у самцов [c.256]


Смотреть страницы где упоминается термин Кроссинговер между ДНК-маркерами: [c.16]    [c.453]    [c.144]    [c.249]    [c.140]    [c.157]    [c.51]    [c.257]    [c.203]   
Генетика человека Т.3 (1990) -- [ c.205 ]




ПОИСК







© 2024 chem21.info Реклама на сайте