Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаг и генная инженерия

    Геном бактериофага X был превращен генными инженерами в наиболее удобный вектор для клонирования крупных фрагментов чужеродной ДНК. В геноме фага X есть два участка, не содержащие генов, необходимых для литического развития и производства потомства. Эти участки включают, соответственно, 22000 нуклеотидных пар в середине карты и 3000 между генами Р и Q (см. рис. 7.7). Таким образом, около [c.280]


    Наиболее хорошо изучена репликация бактериофагов, содержащих в своем вирионе небольшие (около 5000 нуклеотидных звеньев) циклические одиоцепочечные ДНК. К ним относятся, например, фаг 1) Х-174 и широко используемые в генной инженерии фаги MI3 и fd. Их репликация состоит из трех разных по механизму этапов. [c.410]

    При специфической трансдукции фрагмент бактериальной ДНК связан ковалентно с фаговой хромосомой и реплицируется в ее составе. Это позволяет мультиплицировать трансдуцируемые бактериальные гены и манипулировать ими в лабораторных условиях. Явление специфической трансдукции было открыто при работе с умеренным бактериофагом X, развивающимся в клетках Е. соИ К-12 (Morse et al., 1956). Этот фаг является представителем большого семейства лямбдоидных фагов. Он сыграл исключрггельную роль в развитии молекулярной генетики и генетической инженерии. Столь же значительна роль нитевидных фагов семейства М13. Их ДНК широко используется в качестве векторов. Поэтому для понимания многих аспектов генно-инженерных работ необходимо знать основные элементы их генетики и биологии развития. По трем причинам более детально описан фаг Х. Во-первых, это классический объект, послуживший моделью при изучении регуляции экспрессии генов вообще и временного профаммирования развития фагов в частности. Во-вторых, в 60-е годы он явился объектом, на котором была заложена база генетической инженерии — представление о векторе и возможности клонирования и экспрессии в нем чужеродных генов. В третьих, в 70-е годы [c.103]

    Слияние разных цепей ДНК обычно также и у лизогенных бактериофагов, которые вводят свою ДНК в бактериальный геном, где она в течение некоторого времени остается недеятельной. Отметим также, что сплайсинг ДНК является основным этапом всех экспериментов в области генной инженерии [542, 575]. [c.228]

    Яркий пример трансдукции описан Меррилом для фибробластов человека с врожденной галактоземией. Такие фибробласты не содержат фермента галактозо-1-фосфат—уридилилтрансферазы, необходимого для превращения галактозы в глюкозу. Кишечная палочка этот фермент содержит. Если фибробласты обработать бактериофагом Я, ранее кулвтивированным на кишечной палочке, содержащей ген нужного фермента, они приобретают способность синтезировать отсутствовавший у них фермент. Последнее свидетельствует о том, что Соответствующий участок ДНК из кишечной палочки был перенесен бактериофагом в фибробласты, где и был вмонтирован в них геном. Приобретенная таким образом способность синтезировать нужный фермент передается затем всем поколениям новых фибробластов. В этой связи генную инженерию можно назвать генной терапией. Генная инженерия открывает сегодня весьма широкие перспективы в области молекулярной генетики, селекции, биологии, медицины, сельского хозяйства и других областях знаний. [c.44]


    Генная инженерия — научно обоснованное, направленное использование явления трансдукции с целью приобретения живым организмом нового признака. Первые сведения об этом явлении, аналогичном бактериальным трансформациям, были получены при изучении бактериофагов. Известна мутагенная форма кишечной палочки, не способная синтезировать тимин. Если такой штамм заразить бактериофагом Т2, то кишечная палочка уже может синтезировать тимин. Неспособность кишечной палочки синтезировать тимин связана с отсутствием у нее необходимого ддя этой цели фермента. Поскольку при заражении бактериальной клетки бактериофагом в нее проникает только фаговая ДНК, а не белок, то фаговая ДНК, осуществляя процесс трансдукции, наделяет бактериальную клетку механизмом, который и обеспечивает синтез необходимого для образования тимина фермента. [c.44]

    Один из важнейших инструментов генной инженерии—эндонуклеазы, ферменты, расщепляющие ДНК по специфическим последовательностям нуклеотидов внутри цепи (в противоположность экзо-нуклеазам, которые расщепляют ДНК с концов молекулы). Эти ферменты получили название рестрик-таз, поскольку их присутствие в бактериальной клетке ограничивает рост определенных бактериальных вирусов, называемых бактериофагами. Рестриктазы расщепляют ДНК на относительно небольшие фрагменты в участках последовательности строго определенной структуры. Этим их воздействие отличается от большинства других ферментативных, химиче- [c.36]

    Повлиять на наследуемые признаки можно в принципе на всех уровнях действия гена. Теоретически, наиболее полным было бы воздействие на уровне генетического материала-ДНК. Впервые перенос ДНК неполовым путем с помошью бактериофага (или другими способами) был продемонстрирован для бактерий. В настояшее время такой перенос становится возможным для высших организмов, включая клетки человека. Методы генной инженерии привлекли внимание широкой общественности, однако без достаточных оснований акцент в публикациях делался на клонировании и создании искусственных людей. В результате многие были напуганы последствиями генетических исследований человека вообще. В действительности же генная терапия некоторых менделирующих заболеваний в будущем может стать очень эффективной. В таком случае она займет достойное место в ряду различных терапевтических средств. Эту тему мы более подробно обсудим дальше, в разделе 9.2, посвященном генетическому будущему человечества. [c.61]

    Молекулярное клонирование [34, 39]. Ключевым методом явилось молекулярное клонирование фрагментов ДНК, или генная инженерия в узком смысле слова. Этот метод, впервые описанный П. Бергом в США, позволяет нарабатывать большие количества любого отрезка ДНК, встраивая его в ДНК бактериальной плазмиды или бактериофага и заражая такой рекомбинантной ДНК бактерию-хозяина. Чаще всего в плазмиду или фаг встраивают либо фрагменты эукариотической геномной ДНК, либо кДНК, полученную в результате обратной транскрипции мРНК. Когда работают с плазмидами, то обычно используют такие, которые несут ген устойчивости к какому-либо антибиотику В результате на среде с антибиотиком растут и дают колонии лишь те бактерии, в которые проникли рекомбинантные плазмиды. Когда работают с фагом, то следят за возникновением бляшек, т. е. очагов размножения фага, ведущего в лизису (разрушению) бактерий. Каждая колония или бляшка, полученная из одной исходной клетки, содержит один тип плазмиды [c.30]

    У обоих фагов Одна цепь ДНК отличается от другой по плавучей плотности. Благодаря этому после плавления ДНК этих бактериофагов тяжелую и легкую цепи можно разделить при помощи центрифугирования в градиенте плотности хлористого цезия. Если теперь взять только тяжелые цепи ДНК, то благодаря тому, что Za -оперон был включен в геномы Я и ф 80 в противоположных ориентациях, лишь один участок этих цепей будет иметь комплементарные последовательности оснований. Это участок ДНК /ас-оперона. Тогда при гибридизации тяжелых цепей получается совершенный дуплекс только на участке Za -оперона, а остальные части цепочек останутся неспаренными (рис. 11.6, А). Их удаляли действием нуклеазы, специфичной к однонитевой ДНК, и таким образом получили ДНК генов лактозного участка Е. соИ в чистом виде (рис. 11.6, ). Эксперимент Дж. Беквита и других принято считать началом генной инженерии. Поскольку подход к выделению /ас-оперона весьма специфичен для бактерии Е. соН, его сменили другие приемы, применимые в работе с любыми организмами. [c.268]


Смотреть страницы где упоминается термин Бактериофаг и генная инженерия: [c.104]    [c.362]    [c.230]    [c.270]    [c.64]    [c.301]   
Современная генетика Т.3 (1988) -- [ c.280 , c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Генная инженерия



© 2025 chem21.info Реклама на сайте