Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная генетика и развитие растений

    По мере углубления наших знаний в области физиологии и генетики роста и развития растений мы сможем создавать регуляторы роста с заранее заданным воздействием на растения путем их конструирования на молекулярном уровне, а не существовавшего до сих пор эмпирического подбора таких веществ. [c.133]

    Одним из основных факторов, лимитирующих развитие растений, является недостаточная обеспеченность соединениями азота. Только в некоторых почвах, например в черноземах, содержание подвижных азотных соединений может полностью удовлетворить потребности растений. В условиях дефицита азотного питания растения купаются в молекулярном азоте (N2), составляющем около 80 % атмосферы. Этот азот не может быть использован растениями непосредственно, ибо для его фиксации необходим фермент нитрогеназа, который у растений, как и других эукариот, отсутствует. Способностью фиксировать N2 обладают лишь некоторые прокариотические организмы, с которыми многие растения вступают в симбиотические отношения. Разработка генетики систем симбиотической азотфиксации является необходимым этапом для их направленного конструирования и широкого использования в сельском хозяйстве. [c.161]


    Использование методов молекулярной генетики для решения проблем развития растений [c.438]

    В области биотехнологии молекулярная генетика создает фундаментальные основы для создания продуцентов различного рода веществ по двум направлениям. Во-первых, в ходе идентификации новых генов человека и других организмов выявляются все новые биорегуляторы и их рецепторы, которые можно использовать в качестве лекарственных препаратов для ветеринарии и медицины. Во-вторых, совершенствуются системы экспрессии различного рода генов в разнообразных клетках и организмах, что в свою очередь создает две перспективы создание клеток (бактериальных и эукариотических) и организмов (растений и животных), продуцирующих различного рода вещества, которые далее могут использоваться как лекарства, пищевые добавки, ферменты в заводских процессах или компоненты диагностикумов или вакцин, а также для создания организмов с улучшенными свойствами, например, трансгенных растений, устойчивых к засухам или имеющих повышенную переносимость к засоленным почвам, или животных, устойчивых к инфекциям. Наиболее впечатляющим достижением в области создания новых продуцентов можно назвать создание живых ферментеров - животных, секретирующих лекарственные препараты в молоко. Развитие технологий создания трансгенных животных делает процедуру создания такого ферментера достаточно рутинной. Эти технологии базируются на достижениях генетики соматических клеток и в последнее время намечается тенденция использования для этих целей систем клонирования животных. Можно сказать, что развитие молекулярной генетики перевело биотехнологию на уровень целых организмов, заложило предпосылки экологически чистых технологических процессов и интенсивных сельскохозяйственных технологий. Это особенно важно ввиду намечающихся демографических и экологических кризисов перенаселенной планеты. [c.8]

    Использование методов молекулярной генетики для решения проблем развития растений 438 Заключение 440 Литература 440 [c.502]

    Развитие современной генетики характеризуется проникновением молекулярных принципов исследований во все области учения о наследственности. Широкое развитие получили исследования по таким проблемам, как искусственный синтез гена вне организма, продленный мутагенез и молекулярная природа мутаций, гибридизация соматических клеток, получение гаплоидных растений при культивировании пыльников, механизмы регуляции активности генов и действие генов в процессах индивидуального развития, молекулярные основы рекомбинаций, репараций (восстановления) [c.9]


    Определяющую роль в развитии генетики клеток растений ш млекопитающих должно сыграть внедрение метода слияния клеток. Уже сегодня важные средства диагностики моноклональные антитела — получают с помощью линий клеток-гибри-дом возможно, они внесут свой вклад и в развитие терапии. Обычным способом скрещивания у видов Streptomy es стало слияние протопластов, но при работе с грибами этот метод имеет пока второстепенное значение. Открытие межъядерного переноса генов у грибов позволит более сознательно использовать метод слияния протопластов. Есть основания считать, что генетическая инженерия привнесет важные изменения в медицину и сельское хозяйство, и в немалой степени потому, что технология рекомбинантных ДНК позволит нам глубже помять главные молекулярно-биологические особенности клеток растений и животных. Этот подход уже позволяет получать ин- формацию о процессах, лежащих в основе таких сложных для лечения болезней, как малярия и болезнь Чагаса. [c.323]

    Появление предложенной И. Рейментом и X. Холденом атомномолекулярной модели актомиозинового комплекса явилось неординарным событием в современной молекулярной биологии, поскольку свидетельствовало, что в силу различных причин (быть может, из-за меньшей сложности) изучение функционирования мышечной системы могло опередить исследования, в принципе аналогичного плана и той же цели, других молекулярных биосистем, функционирование которых сопряжено с трансформацией разных видов энергии [471]. Поэтому прослеживание пути, приведшего к созданию модели актомиозинового молекулярного мотора, может иметь значение, выходящее за пределы механики сокращений скелетных мышц. Речь идет не только (и не столько) об использовании накопленного опыта и полученных результатов в исследовании близкородственных скелетной мускулатуре видов мышечной ткани сердечной и гладкой мускулатуры, функционирующих непроизвольно, или в исследовании жгутиков бактерий и ресничек инфузорий, а также некоторых клеток животных и растений. Экстенсивное развитие этой области очевидно и не требует особых комментариев. Не будем подробно распространяться и о расширившихся в последние годы возможностях в экспериментальном исследовании процесса мышечных сокращений [485]. Отметим лишь, что наиболее заметным событием здесь явилось привлечение хорошо дополняющих рентгеноструктурный анализ и электронную микроскопию методов молекулярной генетики и метода "лазерной ловушки" [486, 487]. Последний позволяет наблюдать за перемещениями [c.130]

    В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний разработка научных основ инженерной энзимологии разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов исследования структуры и функции биомолекул клетки изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии  [c.18]

    Прочтение генетического кода генома человека стало центральной проблемой молекулярной биологии и генетики в конце 80-х годов. Национальные программы Геном человека были приняты во всех странах с-развитой наукой, в том числе и в бывшем Советском Союзе. В итоге за 10 лет интенсивной работы мирового сообщества на рубеже третьего тысячелетия вчерне расшифрована нуклеотидная последовательность генома человека, созданы физические карты каждой из 23 хромосом, идентифицированы гены, ответственные за многие наследственные заболевания. Полностью завершено секвенирование более десятка геномов микроорганизмов, растений, низших и высших эукариот. Возникли новые науки - геномика и протеоми-ка. Успехи в этих областях во многом обусловлены возможностью клонировать ДНК в искусственных хромосомах дрожжей (YA ). [c.72]



Смотреть страницы где упоминается термин Молекулярная генетика и развитие растений: [c.366]    [c.14]    [c.108]    [c.462]    [c.475]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.438 , c.439 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.438 , c.439 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика

растениях молекулярный вес



© 2025 chem21.info Реклама на сайте