Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаг репликация

    Репликация РНК-содержащих бактериофагов [c.244]

    Как образуются краски цветов, т. 2, стр. 465 Репликация ДНК-содержащих бактериофагов, т. 3, стр. 244 [c.381]

Рис. 4.16. Литический путь развития бактериофага X. А. При репликации кольцевой ДНК бактериофага X образуется линейная молекула, состоящая из повторяющихся сегментов длиной примерно 50 т. п. и. Каждый из этих сегментов представляет собой полноразмерную фаговую ДНК. Б. Фаговая головка вмещает один такой сегмент, затем к головке присоединяется уже собранный отросток. Рис. 4.16. Литический путь <a href="/info/509032">развития бактериофага</a> X. А. При репликации кольцевой ДНК бактериофага X образуется <a href="/info/391316">линейная молекула</a>, состоящая из повторяющихся <a href="/info/459240">сегментов длиной</a> примерно 50 т. п. и. Каждый из этих сегментов представляет собой полноразмерную фаговую ДНК. Б. Фаговая головка вмещает один такой сегмент, затем к головке присоединяется уже собранный отросток.

    Лучше всего процессы репликации изучены для наиболее простых систем — бактерий, бактериофагов и внехромосомных генетических элементов бактерий плазмид. [c.407]

    Репликация ДНК бактериофагов и плазмид [c.410]

    Структура ДНК, предложенная Уотсоном и Криком, из пространственных моделей, предполагает наличие в молекуле двух цепей (тяжей), которые только при репликации временно образуют отдельные участки, не скрепленные водородными связями. Однако открытие у некоторых бактериофагов однотяжевой ДНК, для которой А =Т и Г=5 Ц [1], заставило по-новому взглянуть на природу нативной ДНК. Существование РНК в однотяжевой форме общеизвестно [2). Следовательно, вопрос о конформациях однотяжевых полимеров важен не только для понимания строения и функций обычных двухтяжевых нуклеиновых кислот, но представляет и самостоятельный интерес.  [c.166]

Рис. 2-24. Репликация бактериофага в клетке-хозяине. Рис. 2-24. Репликация бактериофага в клетке-хозяине.
    Общая, или гомологичная, рекомбинация характерна для всех живых организмов от вирусов и бактерий до многоклеточных эукариот. При гомологичной рекомбинации происходит обмен участками между гомологичными, т. е. очень похожими по последовательности, лтолекулами ДНК- Так, к сбщей рекомбинации относятся обмены между гомологичными хромосомами в мейозе у эукариот и рекомбинационная инициация репликации ДНК бактериофага Т4 (см. гл. ХП1). В первом приближении можно сказать, что гомологичная рекомбинация не создает принципиально новых последовательностей, а перетасовывает уже имевшиеся сходные варианты одной и той же последовательности (рис. 51). Чтобы подчеркнуть важность этого свойства, достаточно сказать, что при гомологичной рекомбинации между двумя сходными генами, кодирующими белок, оба рекомбинантных продукта оказываются не нарушенными, не происходит, например, сдвига рамки считывания, Другими словами, при гомологичной рекомбинации каким-то образом обеспечивается взаимное узнавание одинаковых (или очень сходных по последовательности) участков рекомбинирующих. молекул. Если же го.чологии нет, то и рекомбинация такого рода происходить не будет. [c.84]

    Ммекулярный механизм транспозиции может быть различным у разных мобильных элементов, поэто.му лучше всего рассмотреть его на конкретных примерах. Достаточно изучен в этом отношении бактериофаг Ми, являющийся, по сути дела, необычным транспозо-ном. Этот умеренный бактериофаг встраивается в произвольный, участок хро.чосомы бактерии-хозяина. Если происходит индукция профага и начинается его вегетативное развитие, то он размножается, не вырезаясь из хромосомы, за счет повторных актов репликативной транспозиции. Вырезание фаговой ДНК из бактериальной происходит лишь при упаковке в фаговые частицы, когда репликация уже прошла. При репликации фага Л и транспозиция происходит с очень высокой частотой, поэтому именно эта система изучена лучше других. [c.115]


    Грен Э. Л. Регуляторные механизмы репликации РНК-содержащих бактериофагов.— Рига Зинатне, 1974. [c.332]

    РНК-полимеразы — это ферменты, осуществляющие транскрипцию генетической информации с цепи ДНК. Поскольку ДНК в клетке состоит из двух цепей, невольно возникает вопрос каким образом на двухцепочечной матрице может образовываться одноцепочечная РНК Частичный ответ на этот вопрос следует из того факта, что очищенные РНК-полимеразы способны также синтезировать РНК из четырех рибонуклеозидтрифосфатов, используя в качестве матрицы одноцепочечную ДНК. Этот факт позволяет предположить, что механизм транскрипции, подобно механизму репликации ДНК, включает в себя спаривание оснований. С этим выводом хорошо согласуется способность РНК-полимеразы превращать одноцепочечную ДНК из бактериофагу ФХ174 (дополнение 4-В) в двуХ1 рчечную гибридную люл улу [c.205]

    Изменения в структуре ДНК встречаются очень редко. Так, например, в среднем ген может удвоиться 10 раз, прежде чем произойдет заметная мутация [128а]. Тем не менее, работая с бактериями нли бактериофагами, мы можем обследовать чрезвычайно большое число особей в поисках мутаций. Если, например, посеять один миллион вирусных частиц на чашку с агаром в условиях, позволяющих распознать мутацию определенного гена, то в среднем мы можем надеяться обнаружить один мутант. Наиболее часто встречаются мутации, обусловленные заменами пар оснований (точковые мутации). Оии происходят в результате включения неправильного основания при репликации или репарации ДНК. При таких мутациях одно основание в триплете кодона замещается другим. В результате возникает другой кодон, что приводит к замене в соответствующем белке одной аминокислоты на другую . Замену одного пиримидина на другой С—)-Т или Т—)-С) или одного пурина на другой пурин иногда называют транзицией, тогда как замену пурина на пиримидин или, [c.246]

    Как можно ответить на вопрос о том, локализованы ли мутации в одном и том же гене, в близко расположенных генах или же в генах, отстоящих друг от друга на некотором расстоянии Ответ на этот вопрос можно получить с помощью теста на комплементацию. Если два мутантных бактериофага несут мутации в разных генах, то при заражении бактерии обоими мутантными фагами одновременно часто оказывается, что бактериофаги могут размножаться в бактерии-хозяине. Поскольку в этйм случае у каждого фага есть неповрежденный ген для Одного из двух затронутых белков, все генетические функции в этом случае выполняются. Если же у обоих мутантных фагов поврежден Один и тот же ген, то такие фаги не смогут дополнять функции друг Друга при совместном заражении. Такой эксперимент часто называют Чис-гранс-сравнением. Одновременное заражение двумя различными мутантами — это транс-тест. В качестве же контроля используют цис-тест бактерию заражают одновременно рекомбинантом, несущим обе мутации в одной и той же ДНК, и стандартным фагом. В этом случае репликация должна протекать нормально. [c.250]

    Когда ДНК бактериофага проникает в бактериальную клетку, она обычно практически мгновенно начинает контролировать работу метаболического аппарата клетки и направляет его полностью на образование новых вирусных частиц. В результате приблизительно через 20 мин образуется 100—200 новых вирусных частиц, что приводит к лизису клетки и ее гибели. Принципиально отлично от этого ведут себя умеренные фаги. Проникнув в клетку, ДНК умеренного фага может репрессироваться и интегрироваться с бактериальным геномом точно так же, как фактор Р (рис. 15-2). При этом он переходит в состояние профага и вступает в гак называемую лизогенную фазу развития репрессированная ДНК фага реплицируется как часть генома бактерии, не причиняя эреда летке до тех пор, пока какой-нибудь фактор не снимет репрессию и не активирует интегрированный генетический материал. После этого происходят репликация фага и л нэис бактерии. Умеренные [c.258]

    Пытаясь найти по возможности более простые системы для изучения синтеза ДНК, многие исследователи обратились к мелким ДНК-содержащим вирусам типа ФХ174 и М13. Они не обошли при этом вниманием бактериофаги, снабженные отростками фаги Я, Т7 и Т4, а также плазмиду колицина Е-1. Преимущество этих систем состоит в том, что для них легче смоделировать репликацию ДНК в клеточных экстрактах, а кроме того, ДНК вирусов и плазмид хорошо изучены с генетической точки зрения. Во многих случаях репликация зависит как от генов вируса, так и от генов клетки-хозяина. Так, например, мутации генов dnaB, D, Е, F и О приводят к потере способности поддерживать рост фага X точно так же, как и в случае, когда инактивированы /s-гены. Вместе с тем фаг X сохраняет способность к репликации в бактериях с мутантными генами А я С. Многие вирусы, в том числе Т-четные фаги, содержат гены, кодирующие синтез своих собственных специфических ДНК-полимераз и других белков, необходимых для репликации. [c.276]

    После того как рекомбинантная ДНК сшита, ее вводят в живые клетки. Но поскольку она не способна к самовоспроизведению, ее разрушают внутриклеточные нуклеазы. Для того чтобы рекомбинантная ДНК стала составной частью генетического аппарата клетки, она должна либо встроиться (интегрироваться) в ее геном и реплицироваться за его счет, либо быть способной к автономной репликации. Принято молекулы ДНК, способные акцептировать чужеродную ДНК и автономно реплицироваться, называть векторными молекулами. К числу векторов относят плазмиды, бактериофаги, вирусы животных. Векторы должны обладать следующими особенностями  [c.117]


    РИС. 2-23. А. Двойная спираль ДНК В-форма. (Arnott S., Hukins D. W. L.. JMB, 81, 93—105, 1975.) Б. Электронная микрофотография молекулы ДНК бактериального вируса (бактериофаг Т7) в момент ее репликации. Вирусная ДНК представляет собой длинный ( 14 мкм) дуплексный стержень, содержащий около 40 000 пар оснований. Виден небольшой репликативный глаз — участок, где происходит удвоение ДНК. Синтез ДНК начинается в особой точке (точке инициации), расположенной иа расстоянии, равном 17% длины молекулы, от одного из концов дуплекса. Окраска уранилацетатом негативное контрастирование. (С любезного разрешения Т. Wolfson [c.131]

    Особым и весьма важным типом мРНК являются нуклеиновые кислоты таких вирусов, которые, будучи построены только из белка и РНК, используют рибонуклеиновую кислоту как свой генетический материал. Одноцепочечные вирусные РНК таких объектов, как бактериофаги М52, Н17, Г2 и вирус саркомы птиц, действительно выполняют одновременно как функции собственно мРНК, так и функции матрицы для репликации в процессе биосинтеза новых вирусов. Поскольку их относительно просто получить в чистом виде, именно они стали одним из первых объектов изучения последовательности оснований в РНК (см. гл. 22.4). [c.54]

    Репликация не начинается, как правило, с концов линейных двунитевых молекул. Это тем более верно для кольцевых молекул, у которых такие концы просто отсутствуют. В классическом варианте репликация начинается в строго определенных участках, получивших название участков ri (сокращение от термина origin of repli ation), и от этого участка распространяется в обе стороны. Поскольку двунитевые ДНК хорошо видны под электронным микроскопом, то возможно визуальное наблюдение процессов как для линейной ДНК (рис. 50) на примере ДНК бактериофага Т7, так и для кольцевой ДНК (рис. 51) на примере плазмидной ДНК и вирусной ДНК Обезьяньего вируса 40 (SV40). В случае линей-178  [c.178]

    Одна из наиболее упо фебляемых схем такого мутагенеза приведена на рис. 85. С этой целью исходный ген встраивают в двунитевую репликативную форму ДНК фага М13, зрелые частицы которого содержат однонитевую кольцевую молекулу ДНК (плюс-цепь, см. 5.7). Введение полученной рекомбинантной ДНК в бактериальные клетки приводит к накоплению частиц бактериофага, содержащих однонитевую рекомбинантную ДНК, из которых ее можно выделить и использовать в качестве матрицы для ДНК-полимеразы. Для репликации используют специально сконструированный праймер, который соответствует участку встроенного гена, содержащему кодирующий элемент заменяемой аминокислоты. При этом по обе стороны от этого тринуклеотнда праймер полностью комплементарен рекомбинантной ДНК, а в пределах этого тринуклеотида заменен таким образом, чтобы в образующейся при репликации минус-цепи образовалась запла- [c.305]

    Принято использовать понятие репликон , предложенное в 1463 г. Ф. Жакобом, С. Бреннером и Ф. Кьюзеном для обозначения генетической единицы репликации, т. е. сегмента ДНК, который автономно воспроизводится (реплицируется) а процессе клеточного роста и деления. Каждый репликон должен иметь систему управления собственной репликацией. Хромосома Ё. oli, плазмиды, ДНК бактериофагов представляют собой репликоны разной сложности, способные к автономной репликации tf клетке и имеющие систему инициации. Репликон может содержать в себе гены, кодирующие синтез всех белков, необходимых для репликации (хромосома Е. oli), части таких белков (некоторые сравнительно крупные бактериофаги) или использовать для своей репликации практически только чужие белки (мелкие фаги М13 или G-4, содержащие однонитевые циклические ДНК). [c.407]

    Наиболее хорошо изучена репликация бактериофагов, содержащих в своем вирионе небольшие (около 5000 нуклеотидных звеньев) циклические одиоцепочечные ДНК. К ним относятся, например, фаг 1) Х-174 и широко используемые в генной инженерии фаги MI3 и fd. Их репликация состоит из трех разных по механизму этапов. [c.410]

    Как и репликация, транскрипция состоит из трех основных этапов инициации, элонгации и термииации. В отличие от ДНК-полимераз, РНК-полимеразы способны к самостоятельной инициации синтеза РНК, которая осуществляется в определенных точках ДНК. Место инициации сиитеза РНК определяется специальными регуляторными участками ДНК—промоторами. Тсрмииация синтеза также происходит на специфических участках ДНК —терминаторах. Процесс транскрипции регулируется разнообразными способами, что позволяет клетке приспосабливаться к изменениям условий существования. Наиболее хорошо изучены транскрипция и способы ее регуляции у бактерий и бактериофагов. [c.412]

    Великая тайна, скрывавшаяся за коротким словом ген , окончательно пленила Дельбрюка. Как происходит удвобние или, опять-таки на жаргоне, репликация генов при делении клеток В особенно сильное возбуждение пришел Дельбрюк, когда узнал о существовании бактериальных вирусов или, как их чаще называют, бактериофагов (бу Шально — пожиратели бактерий ). [c.10]

    Эти удивительные частицы, которых и живыми-то не назовешь, вне клетки ведут себя просто как большие молекулы — из них даже выращивают кристаллы. Но когда вирус попа/1ает в клетку, то через 20 минут клеточная оболочка лопается и из нее вываливается сотня абсолютно точных копий исходной частицы. Дельбрюка осенило, что на бактериофагах гораздо легче будет изучать процесс репликации, удвоения генов, чем на бактериях, не говоря уже [c.10]

    Гипотеза эта возникла потому, что было прямо доказано для того чтобы начать удваиваться, молекуле ДНК обязательно надо закрутиться в сверхспираль, но для самого процесса репликации сверхспираль вовсе не нужна. Более того, иногда перед репликацией одна из нитей кольцевой замкнутой ДНК рвется, причем этот разрыв делает специальный белок и только в том случае, если ДНК сверх-спирализована. Получается какая-то бессмыслица — клетка затрачивает усилия, чтобы превратить ДНК в сверхспираль с помощью одного белка (ДНК-гиразы) для того, чтбиы другой белок эту сверхспирализацию немедленно ликвидировал. Но факты неопровержимы — без этого загадочного ритуала репликация не начнется, во всяком случае в тех объектах, которые были исследованы (например, в бактериофаге ФХ174). [c.94]

Рис. 27-7. Общая схема эксперимента Херши и Чейз. Эксперимент проводили на двух препаратах бактериофага, меченного радиоактивным изотопом. В одном из ник о помощью изотопа Р были помечены фосфатные группы фаговой ДНК, а в другом изотоп был введен в серусодержащие аминокислоты белка оболочки фага. Каждый из меченных таким способом фагов по отдельности был добавлен к суспензии немеченых бактерий. Затем обе группы зараженных фагом бактериальных клеток встряхивали в смесителе. Оказалось, что клетки, зараженные Р-вирусными частицами, содержат в своем составе Р, т. е. в них попала меченая вирусная ДНК. Отделенные от клеток тени фага (пустые оболочки вируса) радиоактивности не содержали, В клетках, зараженных З-вирусными частицами, радиоактивности яе было, зато она была найдена в тенях фага после отделения их от клеток с помошью смесителя. Поскольку в обоих случаях было получено потомство вирусных частиц, данный эксперимент доказал, что генетическая информация, необходимая для репликации вируса, переносится вирусной ДНК, а не вирусным белком. Рис. 27-7. <a href="/info/1876287">Общая схема эксперимента</a> Херши и Чейз. Эксперимент проводили на двух препаратах бактериофага, <a href="/info/1383619">меченного радиоактивным</a> изотопом. В одном из ник о помощью изотопа Р были помечены <a href="/info/510922">фосфатные группы</a> фаговой ДНК, а в другом изотоп был <a href="/info/132483">введен</a> в серусодержащие <a href="/info/35751">аминокислоты белка</a> оболочки фага. Каждый из меченных таким способом <a href="/info/167030">фагов</a> по отдельности был добавлен к суспензии немеченых бактерий. Затем обе группы зараженных фагом бактериальных клеток встряхивали в смесителе. Оказалось, что клетки, зараженные Р-<a href="/info/1401121">вирусными частицами</a>, содержат в своем составе Р, т. е. в них попала меченая вирусная ДНК. Отделенные от клеток тени фага (пустые <a href="/info/98015">оболочки вируса</a>) радиоактивности не содержали, В клетках, зараженных З-<a href="/info/1401121">вирусными частицами</a>, радиоактивности яе было, зато она была найдена в тенях фага после отделения их от клеток с помошью смесителя. Поскольку в обоих случаях было получено потомство <a href="/info/1401121">вирусных частиц</a>, данный эксперимент доказал, что <a href="/info/32967">генетическая информация</a>, необходимая для <a href="/info/1408907">репликации вируса</a>, переносится вирусной ДНК, а не вирусным белком.
    Роль ДНК как носителя генетической информации подтверждается целым рядом фактов. Эксперимент Эвери, МакЛеода и Мак-Карти показал, что ДНК, вьщеленная из одного штамма бактерий, способна проникнуть в клетки другого штамма и трансформировать их, придавая им некоторые наследуемые признаки донора. Опыт Херши и Чейз продемонстрировал, что именно ДНК бактериофага, а не его белковая оболочка несет генетическое сообщение для репликации вируса в клетке-хозяине. Все соматические клетки организма данного вида сод жат ДНК с одинаковым нуклеотидным составом, который не зависит ни от. питания, ни от условий окружающей среды Хотя нуклеотидный состав ДНК у разных видов различен, в двухцепоче ных ДНК всех видов число остатков аденина всегда равно числу остатков тимина, а число гуаниновых остатков всегда равно числу цитозиновых остатков. [c.890]

    Нуклеотидный состав ДНК фХ174. ДНК бактериофага фХ174 может находиться в двух формах в одноцепочечной (в ви-рионе) и в двухцепочечной (в ходе репликации в клетке-хозяине). Как вы думаете, одинаков ли нуклеотидный состав у этих двух форм ДНК Обоснуйте свой ответ. [c.892]

Рис. 2.16. Репликация двухцепочечной ДНК. При деспирализации ДНК возникает промежуточная разветвленная структура (репликативная вилка). Обе одиночные цепи ДНК имеют противоположную полярность (5 -+ 3 и 3 5 ). ДНК-полимеразы способны катализировать синтез только в одном направлении (5 З ). Поэтому синтез одной цепи может происходить непрерывно в направлении продвигающегося раскручивания двойной спирали. Другая же цепь должна синтезироваться в обратном направлении. Синтез начинается с образования короткого отрезка РНК, служащего затравкой (праймером) (у бактериофага Т7 это основания А-С-С-А). Затем ДНК-полимераза осуществляет синтез цепи ДНК длиной в 1000-2000 нуклеотидов, примыкающей к этой РНК. В конце концов РНК-праймер удаляется экзонуклеазой, брешь заполняется ДНК-полимеразой (й) и закрывается ДНК-лигазой (б). Такой механизм дробного , или прерывистого , синтеза ДНК с последующим связыванием отдельных отрезков позволяет объяснить репликацию ДНК на антипараллельной цепи. Рис. 2.16. <a href="/info/32698">Репликация</a> <a href="/info/1382244">двухцепочечной</a> ДНК. При деспирализации ДНК возникает <a href="/info/511114">промежуточная</a> разветвленная структура (<a href="/info/32750">репликативная вилка</a>). Обе одиночные цепи ДНК имеют <a href="/info/32035">противоположную полярность</a> (5 -+ 3 и 3 5 ). ДНК-полимеразы способны катализировать синтез только в одном направлении (5 З ). Поэтому синтез одной цепи может происходить непрерывно в направлении продвигающегося раскручивания двойной спирали. Другая же цепь должна синтезироваться в обратном направлении. Синтез начинается с образования короткого отрезка РНК, служащего затравкой (<a href="/info/187941">праймером</a>) (у бактериофага Т7 это основания А-С-С-А). Затем ДНК-<a href="/info/33441">полимераза</a> осуществляет <a href="/info/1357078">синтез цепи</a> ДНК <a href="/info/117410">длиной</a> в 1000-2000 нуклеотидов, примыкающей к этой РНК. В <a href="/info/143469">конце концов</a> РНК-<a href="/info/187941">праймер</a> удаляется экзонуклеазой, <a href="/info/1408572">брешь</a> заполняется ДНК-полимеразой (й) и закрывается ДНК-лигазой (б). Такой механизм дробного , или прерывистого , <a href="/info/11666">синтеза</a> ДНК с последующим связыванием отдельных отрезков позволяет объяснить репликацию ДНК на антипараллельной цепи.
    Поскольку транспозоны не способны к автономной репликации, для переноса их из одной бактериальной клетки в другую необходим так называемый вектор (переносчик). Векторами могут служить плазмиды или бактериофаги. Следует упомянуть, чТо колифаг мю ( фаг-мута-тор ), подобно транспозону, обладает способностью внедряться в различные участки бактериальной хромосомы и вызывать мутации. По этой причине фаг мю был назван гигантским транспозоном , и его используют в повседневной практике получения мутантов Е. oli. [c.447]

    Получены четкие доказательства (см. стр. 161 и 250) того, что репликация РНК вирусов сопровождается образованием дв х-ценочечной репликативной формы РНК. В качестве примера можно назвать репликативную форму РНК, образующуюся нри действии РНК-зависимой РНК-полимеразы (РНК-синтетазы) в клетках Е. oli, инфицированных РНК бактериофага MS2 (стр. 250). Эта РНК устойчива к рибонуклеазе, но нри нагревании до высоких температур (от 102 до 104°) наступают резкие изменения. При быстром охлаждении образуется чувствительное к действию рибонуклеазы вещество устойчивость к рибонуклеазе восстанавливается, если это вещество охладить до температуры ниже ее температуры плавления [79—84, 94]. При градиентном центрифугировании двухцепочечная форма характеризуется несколько меньшей плотностью, чем соответствующая одноценочечная. [c.59]

    Совершенно ясно, что технически довольно трудно наблюдать, каким образом вирусы растений и животных внедряются в клетки своих хозяев и размножаются там трудно также изучать роль нуклеиновой кислоты вируса в этих процессах. Удобным объектом для такого рода исследований служат бактериофаги — вирусы, поражающие бактериальные клетки. Они легко поддаются биохимическому изучению, главным образом благодаря быстрому размножению их в клетках хозяина. Бактериофаги широко использовались при исследованиях в области молекулярной генетики и репликации пуклеиновых кислот. Частицы бактериофага могут содержать либо ДНК, либо РНК. [c.157]


Смотреть страницы где упоминается термин Бактериофаг репликация: [c.244]    [c.104]    [c.201]    [c.74]    [c.159]    [c.195]    [c.441]    [c.11]    [c.868]    [c.160]    [c.368]    [c.49]   
Биохимия Том 3 (1980) -- [ c.244 ]




ПОИСК







© 2024 chem21.info Реклама на сайте