Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок латеральное движение в мембранах

    Динамическое состояние липидного бислоя, являющееся основой функционирования мембраны, определяется целым рядом факторов вращательной и латеральной диффузией отдельных молекул фосфолипидов, подвижностью их углеводородных цепей, транс-гош-изомеризацией остатков жирных кислот. Лабильность мембранных белков, в свою очередь, зависит от фазового состояния и вязкости липидного матрикса мембраны. С помощью метода ЭПР показано, что для молекул фосфолипидов в мембранах характерны движения двух типов  [c.22]


    Белки могут составлять от 7б До /з вещества мембраны. В первом случае они легко перемещаются в плоскости липидного бислоя, который служит главной составной частью мембраны. Движение белка прекращается при температуре ниже критической для углеводородной сердцевины бислоя. Скорость латерального движения белков сильно снижается, если белки становятся главной составной частью мембраны, что наблюдается во внутренней мембране митохондрий. [c.30]

    Множество явлений свидетельствует о справедливости концепции жидкоподобного состояния мембраны, которое зависит от природы жирнокислотных остатков, входящих в состав мембраны. Чем выше степень их ненасыщенности, тем сильнее выражена степень разжиженности мембраны. Насыщенные алифатические цепи и стерины вызывают повышение вязкости мембраны и ограничивают латеральное движение молекул белка в плоскости мембраны. [c.373]

    Слабые постоянные поля могут вызывать движение свободных клеток (электрофорез), а также вызывать латеральное перемещение заряженных рецепторов по поверхности клеточной мембраны у иммобилизованных клеток. Явления электрофреза мембранных рецепторов используется как инструмент для изучения подвижности белков в плазматической мембране. [c.46]

    Биологические мембраны-это не застывшие структуры. Напротив, и липиды, и многие белки мембран постоянно перемещаются в латеральном направлении. Быстрое движение белков мембраны выявляется с помощью флуоресцентной микроскопии при следующей постановке опыта. Культивируемые клетки человека и клетки мыши можно заставить слиться друг с другом образующаяся при этом гибридная клетка называется гетерокарион. Одна часть плазматической мембраны гетерокариона происходит из клетки мыши, а другая - из клетки человека. Остаются ли мембранные белки мыши и человека разделенными в ге- [c.215]

    Микр отру бочки — это длинные цилиндрические образования (диаметром 20—30 нм), стенки которых построены из глобулярного белка — тубулина (димер, состоящий из двух субъединиц — а и р, которые имеют практически одинаковый молекулярный вес — 55 000). Тубулин способен к самосборке —- в присутствии ГТФ происходит присоединение друг к другу молекул тубулина, в результате чего, образуется спираль, один виток которой состоит из 13 молекул тубулина. Полимеризация тубулина сопровождается гидролизом ГТФ до ГДФ и Фн. Витки спирали плотно примыкают друг к другу и тем самым образуют полый цилиндр — микротрубочку, 1убулин и минорные белки, входящие в состав мнкротрубочки, могут фосфорилироваться цАМФ-зависимыми протеинкиназами (см. раздел 4.2.3). Они могут связывать также ионы Са +. Фосфорилированне влияет на скорость полимеризации микротрубочек, а Са2+ вызывает их деполимеризацию. Таким образом, гормоны и нейромедиаторы, влияющие на синтез цАМФ (см. раздел 1.3) или на проницаемость мембран для Са + (см. ниже)., будут изменять состояние микротрубочек, что, в свою очередь, приведет к изменению латерального движения белков в мембране, вязкости мембраны, переноса веществ от ядра к периферии клетки, подвижности органелл и т. д, [c.26]


    Самым загадочным во всей последовательности рассматриваемых событий является вопрос о каналах , переносящих ионы через мембрану. Рассмотрим некоторые из существующих гипотез. По современным представлениям, биологическая мембрана представляет собой мозаичную белок-липидную структуру. В некоторых участках липидный бислой прерывается белками, насквозь пронизывающими всю мембрану. В иных участках белками занят только один (наружцы-й.или внутренний) сл.ой липида. Есть участки бислоя, полностью лишенные белков. Считается, что около 30—40% мембранных липидов связано с белками, а остальные молекулы находятся в с1зободном состоянии. И белки и липиды биологической мембраны могут совершать латеральное движение в плоскости мембраны, тем самым постоянно изменяя мозаичную картину. Предполагается, что каналами для ионов служат подвижные молекулы воды в неупорядоченной области липидов. Открывание этих каналов при, деполяризации мембраны или при взаимодействии нейромедиатора с рецептором объясняют переходом мембранных белков в более глобулярную структуру, вследствие чего липиды и вода теряют свою упорядоченность, нарушаются гидрофобные связи с белком и появляются подвижные молекулы воды в липидном бислое. С помощью т акой гипотезы очень трудно объяснить высокую селективность каналов , пх избирательность и в отношении ионов, и в отношений блокаторов. [c.166]


Смотреть страницы где упоминается термин Белок латеральное движение в мембранах: [c.117]    [c.392]    [c.133]    [c.75]    [c.392]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.30 , c.207 , c.208 ]




ПОИСК







© 2025 chem21.info Реклама на сайте