Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции присоединения атомов Н и других радикалов

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]


    Обычно такие реакции идут легко, если радикал-аддукт содержит атом галогена или другую группу X, характеризующуюся слабой связью С-Х, т.е. низкой энергией диссоциации этой связи. Реакции фрагментации представляют определенный синтетический интерес, однако в этих случаях фрагментирующиеся радикалы получают не путем присоединения к кратным связям, а другими способами электролизом, фотолизом или термическим воздействием. [c.554]

    Первый продукт реакции можно рассматривать как радикал, обладающий тремя свободными валентностями по месту атомов углерода 9, 11 или 13 теоретически возможны различные сочетания с образованием ряда изомеров дегидродимера. Если допустить, что присоединение к атому углерода И всегда приводит к димеризации с образованием связи у атома 9 или 13, то процентное отношение конъюгированных связей в димере будет служить мерой воздействия на атом 11. Атомы водорода, соединенные с атомом углерода 8 и 14, также очень реакционноспособны. Возможны реакции и с другими атомами водорода и, следовательно, возможно большое разнообразие дегидродимеров. [c.151]

    Реакция заключается в присоединении парафина по двойной связи олефина (водород идет к одному ненасыщенному атому углерода, а алкильный радикал к другому)  [c.210]

    Атомы хлора являются электрофилами (так как хлор — электроотрицательный элемент, и радикал С1- легко охватывает электрон, чтобы дополнить свой октет) и поэтому легко присоединяются к двойной связи соединения (52), образуя радикал (53). Этот радикал в свою очередь может оторвать атом хлора от второй молекулы (этот процесс можно также рассматривать как реакцию радикального замещения в молекуле С1—С1) с образованием конечного продукта присоединения (54) и еще одного атома хлора, который продолжает цепную реакцию, т. е. очень быстрая, продолжающаяся реакция возникает под действием каждого атома хлора — инициатора, образованного фотохимическим путем. Найдено, что каждый квант поглощенной энергии приводит к превращению нескольких тысяч молекул (52) в (54) цепные реакции в этом случае, как говорят, имеют высокий квантовый выход, являются длинными . Вплоть до более поздних стадий реакции, когда почти весь алкен (52) и хлор израсходуются, концентрации радикалов (53) и С1 очень малы по сравнению с концентрациями исходных веществ столкновение радикала с молекулой будет поэтому происходить гораздо чаще, чем столкновение радикала с другим радикалом. Тем не менее цепная реакция прекращается после столкновения двух радикалов, например  [c.352]


    Наблюдаемое направление присоединения реагентов X— - Y к несимметрично замещенным двойным связям по схеме А, данной для присоединения НВг к 1-бромпропену-2, основывается, очевидно, на том, что атом галоида или свободный радикал все1да стремятся найти электрон для дополнения своего секстета электронов до октета, т. е. действуют как электрофильные агенты. Поэтому при таких реакциях присоединения радикал ищет места с возможно большей электронной плотностью кроме того, образующийся новый радикал должен иметь наибольшую энтропию по сравнению с другими возможными продуктами присоединения. Для подобных реакций присоединения очень существенным является пространственный фактор (наименьшие пространственные препятствия). Это правило имеет, по-видимому, общее значение. [c.227]

    Радикалы из I можно получить в кристаллическом состоянии, откачав растворитель, в котором производился синтез радикалов. Темносиние кристаллы радикала легко возгоняются в вакууме при температурах 70—100° С. По своим химическим свойствам радикал обладает двойственной природой, что связано с делокализацией неспаренного электрона, с переносом реакционного центра. С одной стороны, многие реакции (например, отрыв водорода от молекул растворителя, реакция с натрием) происходят по атому кислорода с другой стороны, реакция с галоидами, присоединение алкильных и перекисных радикалов [5, 7], присоединение кислорода протекает по бензольному кольцу в пара-положение к атому кислорода. При этом с кислородом образуется перекись П  [c.42]

    Это легко объяснимо, так как окисление полигликолей является цепной реакцией, развивающейся по свободнорадикальному механизму. Согласно этим представлениям, присоединение молекулы кислорода к первичному радикалу, образуемому полигликолем, вызывает появление перекисного радикала. Последний легко отрывает атом водорода у другой молекулы полигликоля, давая начало новой цепи и образуя гидроперекись, легко распадающуюся на два новых радикала. Роль антиокислителя сводится при этом к превращению активных перекисных радикалов в инертные продукты, не способные к продолжению цепи. После израсходования ингибитора, как и в случае нефтяных масел, начинается процесс окисления полигликоля, протекающий с повышенной скоростью. [c.19]

    Ароматическое свободнорадикальное замещение представляет собой нецепную реакцию, протекающую по схеме присоединения-отщепления [114,115]. На первой стадии радикал присоединяется к молекуле ароматического соединения с образованием радикального 0-комплекса (134), который на второй стадии взаимодействует с таким же или другим радикалом, отдавая атом водорода и превращаясь в продукт замещения. [c.87]

    Как легко видеть, начальная стадия — фотохимическое расщепление молекулы хлора — приводит к образованию двух реакционноспособных частиц — свободных атомов хлора, являющихся, в сущности, радикалами. Это подтверждается тем, что скорость реакции оказывается пропорциональной корню квадратному из интенсивности поглощенного света, т. е. каждый квант поглощенной энергии вызывает инициирование двух цепей реакций. Присоединение свободного атома хлора к молекуле ненасыщенного соединения приводит к образованию другого радикала ХП, способного вступать в радикальную реакцию замещения с молекулой хлора, в результате чего образуется конечный продукт присоединения XIII и свободный атом хлора. Этот атом способен инициировать тот же цикл реакций со следующей молекулой ненасыщенного соединения, так что процесс продолжается. Таким образом, каждый атом хлора, образованный а результате фотохимического расщепления, инициирует исключительно быструю цепную реакцию. [c.288]

    Строение нитрохлоралкана обычно может быть предсказано на основании предположения, что атака радикала -МОг направлена на наименее замещенный атом углерода при двойной связи с последующим переносом цепи с помощью нитрилхлорида. Однако могут образоваться и другие продукты, по-видимому, в результате начальной атаки атома хлора с последующим переносом на нитрилхлорид. Так, например, строение продуктов реакции, полученных из стирола [379] и из коричной кислоты [379], а именно а-нитро-р-хлорэтилбензола и ос-хлор-Р-нитро-Р-фенилпропионовой кислоты, можно объяснить на основании предположения, что именно такой механизм является преобладающим. По-видимому, необходимо более тщательное изучение такой возможности, особенно принимая во внимание важное значение аналогичного цепного механизма в реакциях присоединения сульфенилгалогенидов (см. стр. 224). [c.252]

    Блокирующее влияние метильных заместителей можно использовать для определения наиболее реакционноспособного места ароматической или олефиновой молекулы. Например, в то время как относительная константа скорости присоединения метильного радикала равна 2090 для бутадиена-1, 3 и 2200 для 2,3-диметил-бутадиена-1,3, для гексадиена-2,4 она понижается примерно до 300 и еще большее понижение (примерно до 20) наблюдается для реакции 2,5-диметилгексадие-на-2,4. Это отчетливо указывает, что положения 1 и 4 бутадиена наиболее реакционноспособны (результат, хорошо известный по другим данным). Подобно этому, относительная константа скорости реакции присоединения метильного радикала к а, р, 3-триметилстиролу равна только 15, в то время как значения для стирола и а-метилстирола равны 780 и 930 соответственно. Это доказывает, что р-углеродный атом — наиболее реакционноспособный центр молекулы стирола, что является также подтверждением хорошо известного факта. [c.340]


    Мы разобрали выше радикальный механизм катализа на примере реакции замещения Aj+Bg 2АВ. Гораздо больший практический интерес имеют реакции присоединения, простейшим примером которых является процесс гидрирования этилена. Радикальный механизм реакций присоединения существенно не отличается от механизма реакций замещения. Все же он имеет некоторые особенности. В реакциях замещения молекула при реакции со свободной валентностью V давала Av (хемосорбированный атом, инертный в химическом отношении) и другой атом А, очень слабо связанный с поверхностью, обладающий свойствами свободного радикала. Вещества, имеющие двойную связь, при реакции со свободной валентностью поверхности приводят к образованию свободного радикала, который, однако, одним концом прочно химически связан с поверхностью С2Н4- -V V H2 — СНз—. У этого поверхностного хемосорбированного радикала имеются различные возможные пути реакции. [c.302]

    Ряд различных фактов свидетельствует о том, что метильная группа —СНз, присоединенная к системе, в которой имеется резонанс, или даже просто к отдельному атому, обладающему я-электронами, ведет себя так, как будто участвует в сопряжении. В меньшей степени эго относится к радикалу —СН2СН3 и другим алкильным радикалам, а также к группе >СНг. В более ранних исследованиях по этому вопросу отмечали эффект влияния алкильного замещения на скорость реакций бром- и хлорбензола казалось, что алкильное замещение приводит к притоку электронного заряда в бензольное кольцо, причем этот перенос электронов наиболее эффективен, когда в качестве заместителя выступает метильный радикал. Данные по скоростям реакций всегда трудно однозначно интерпретировать, но имеется ряд других сведений, подтверждающих это явление. Следуя Малликену [263], мы будем называть описанное явление сверхсопряжением, т. е. сопряжением, дополнительным к обычному. Прежде всего, способность метильной группы в молекуле толуола ориентировать в орто-, пара-положешя подтверждается наличием у этой молекулы дипольного момента, равного 0,4 D. В молекуле метана группа —СНд, очевидно, [c.377]

    Койман и Фаренхорст [5] обнаружили аналогичную зависимость для относительной реакционности радикала СС1з в реакциях присоединения к ароматическим углеводородам (рис. 66). При построении этих графиков опытная величина относительной реакционности разделена на число атомов в молекуле, обладающих наибольшей величиной индекса свободной валентности, В табл. 49 отмечены атомы углерода с наибольшими индексами свободной валентности. Связь между реакционностью ароматических углеводородов и индексами свободной валентности отмечалась и в ряде других работ. Так, Ройт и Уотерс [8] показали, что присоединение бензоатного радикала к полициклическим углеводородам протекает тем легче, чем больше индекс максимальной свободной валентности углеводорода. В тех случаях, когда подход к атому углерода с наибольшим индексом [c.270]

    По причинам, которые будут рассмотрены в разделе, посвященном реакциялг разложения при высоких температурах (см. стр. 160), от метильной группы молекулы изобутилена неполярно отщепляется атом водорода. Этот атом, а также образующийся в результате отщепления радикал, присоединяются к другой молекуле мономера способом, обычным для реакций присоединения, протекающих по радикальному механизму. Рассматриваемый случай циклизации имеет аналогичный механизм. [c.152]

    Выше указывалось, что механизм реакций этерификации и гидролиза для спиртов с сильно электроотрицательными радикалами может отличаться от рассмотренного (подробнее см. [126]). Действительно, в ряде исследований было обнаружено, что в случае эфиров аллиловых [726] и некоторых других [727] спиртов гидролитическое расщепление происходит, по-видимому, по алкилкислородному механизму (12,2). Это следует из того, что оптически активные эфиры, в которых атом углерода радикала Н, присоединенный к кислороду, асимметричен, раце- [c.572]

    Поскольку промежуточный радикал легко подвергается как инверсии, так и вращению вокруг связи С—С, отрыв атома галоида может привести к любому из двух изомеров. Можно ожидать, что это благоприятствует выделению болое стабильной формы. В процессе изомеризации участвует тот же промежуточный радикал, что и в реакции присоединения, а поэтому процессы присоединения и изомеризации неизбежно конкурируют. Эту конкуренцию для реакции дихлорэтилена в жпдкой фазе при 25° в присутствии 0,05 М Вгд подробно исследовали Кетелар и др. [44]. Они показали, что ссотношение между процессами изомеризации и присоединения сохраняется постоянным при различных интенсивностях света и в присутствии или в отсутствие следов кислорода, причем кислород понижает квантовый выход примерно от 10 до 10 . Они также сделали вывод, что атомы брома присоединяются с одинаковой скоростью ( + 50%) как к цис-, так и к тракс-дихлор-этилепу, но считают, что отрыв атома брома является бимолекулярной реакцией передачи атома брома молекуле другого олефина, а ие диссоциацией на свободный атом брома. Хотя в данном случае предпочтительна последняя интерпретация (см. раздел 22, д), оба пути для этих систем экспериментально неразличимы. Мюллер и Шумахер [43] подсчитали для газовой фазы, что энергия активации реакции (24) на 6,2 ккал выше, чем в случае атаки промежуточного радикала на Вга (с другой стороны, последняя, вероятно, имеет меньшее значение фактора PZ). Очевидно, что изомеризации благоприятствуют более высокие температуры, а также низкая концентрация галоидов. [c.243]

    Какие превращения преобладают, зависит от вида олефина и его концентрации. Высокая концентрация четыреххлористого углерода подавляет реакцию полимеризации. При применении 100 кг-мол четыреххлористого углерода на 1 кг-мол олефина мо кио почти полностью прекратить полимеризацию, так как радикал по реакции III встречает слишком большой избыток четыреххлористого углерода. С другой стороны, октен-1 не обладает большой реакционной способностью к присоединению указанного типа, как этилен. Напротив, при применении четырехбромистого углерода ие требуется такого большого избытка для подавлеиия полимеризации. Для этого достаточно молярного соотношения четырехбромистого углерода к олефину 4 1 до 2 1 в зависимости от применяемого олефина. Это связано с тем, что атом брома гораздо легче отрывается от четырехбромистого углерода, чем атом хлора от четыреххлористого углерода. [c.584]

    Участие радикалов в реакциях ароматического замещения было обнаружено впервые в 1934 г. в классической работе Грива и Хея. С тех пор постоянно исследовались и уточнялись детали механизма и границы синтетического применения этой реакции. Реакция имеет широкие пределы, арильные и многие другие типы радикалов реагируют с ароматическими и гетероароматическими соединениями [34] по общему механизму, представленному в уравнениях (25) — (28). Хорошо известно также внутримолекулярное арилирование [35]. Большая часть работ по изучению механизма реакции была выполнена с арильными радикалами, генерированными из диароилпероксидов. Стадия присоединения, приводящая к образованию радикала (32) [уравнение (25)], является лимитирующей стадией для фенильного радикала эта стадия экзотермична ( к75 кДж-моль ) и при обычных условиях, по-видимому, необратима. Образующийся резонансно стабилизованный циклогекса-диенильный радикал (32) не реагирует с субстратом и не отщепляет спонтанно атом водорода с образованием продукта замещения (33), а подвергается быстрым радикал-радикальным реакциям [уравнения (26)—(28)]. Для реакции дибеизоилпероксида с бензолом при 80°С были определены константы скорости К = 2-10 , 3 = 4,5-10 , 2= 10,5-10 л-моль- -с . В этой реакции дибен-зоилпероксид разлагается также за счет взаимодействия с фенил-циклогексадиенильными радикалами. [c.582]

    Винильиые и диеновые мономеры довольно легко образуют нелинейные полимеры, что указывает на структурное разветвление. Существует несколько возможностей протекания этого процесса посредством реакций передачи цепи. Вероятно, простейщим путем является передача цепи к полимерному радикалу т от одного из внутренних атомов углерода полимерной молекулы или радикала с последующим присоединением другого полимерного радикала т% к активированному атому углерода  [c.422]

    В приведенной выше схеме цепных реакций распада 1,2-дихлорэтана отрыв атома водорода при первой реакции роста должен приводить к образованию 1,2-дихлорэтильного радикала, который в дальнейшем отщепляет атом хлора от 3-углеродного атома, что вызывает продолжение роста цепи. С другой стороны, у 2-хлорпропана наиболее реакционноспособным атомом водорода, несомненно, является атом, присоединенный к среднему атому углерода. Образующийся радикал [c.225]

    Нуклеофильные реакции протекают прямым замещением атома на атом или через предварительную медленную диссоциацию органического соединения на положительный ион радикала и отри-цательный ион с последующим присоединением другого отрицательного иона к положительному иону радикала, последняя реакция идет по иономолекулярному механизму  [c.512]

    Свободнорадикальное ароматическое замещение представляет Собой неценную реакцию, протекающую по схеме присоединения— отщепления 1353—356] На первой стадии радикал Присоединяется к молекуле ароматического соединения с обра-, зованием радикального а-комплекса (141), который на второй стадии взаимодействует с таким же или другим радикалом, отдавая атОм водорода и превращаясь в продукт замещения. Одностадийный механизм с синхронным связыванием радикала и отрывом атома водорода исключается, так как при арилнро-ваиии и алкилировании нитросоединений совершенно не наблюдается восстановления нитрогрупп, как этого следовало бы ожидать при выделении атомарного водорода. [c.120]

    Этот механизм представляет определенный интерес в связи с выделением иодистого водорода. Так, Люббе и Виллард [53] нашли в облученном у-квантами замороженном стеклообразном иодистом этиле довольно значительные количества этил-радикалов, но в этих же условиях после ультрафиолетового облучения не было обнаружено ни одного такого радикала, хотя и у-, и ультрафиолетовое излучения генерируют в жидком иодистом этиле как этилен, так и НЛ. Неудача постигла Симонса и Таунсена [54], которые пытались определить методом ЭПР какие-нибудь радикалы в замороженной стеклообразной смеси иоддианилоэтила и этилового спирта, облученной ультрафиолетовым светом. Однако последующие эксперименты показали, что при фотолизе данных систем образуется иодистый водород. Таким образом, по-видимому, реакция (9.61) преобладает над всеми другими. Необходимым условием выделения иодистого водорода и возникновения ненасыщенных соединений является наличие в органической молекуле группы, где атом водорода локализован на углероде, присоединенном к углероду с атомом иода. Поскольку иод образуется через стадию синтеза НЛ, то в соответствии с этим при радиолизе и фотолизе найдено, что выход иода увеличивается по мере роста числа атомов водорода, связанных с р-углеродом [48, 55]. [c.294]

    Реакция (а) приводит к 1- и 2-фенилнафталинам, реакция (б) —к 1- и 2-нафтилбензоатам и реакция (в) — к 1- и 2-нафтильным радикалам, которые, в свою очередь, действуют как арилирующие агенты по отношению к имеющемуся в избытке нафталину, давая 1, Г-динаф-тил- и 1, 2 -динафтил, и 1, 2 -динафтил и 2, 2 -динафтил, соответственно. Пропорции, в которых образуются 1- и 2-изомеры при реакциях фенилирования и бензоилоксилирования, указывают на большую реакционную способность положения 1 по отношению к свободнорадикальной атаке в соответствии с теоретическими предсказаниями, основанными на атомных энергиях локализации и значениях свободных валентностей. Пропорции, в которых образуются три динафтила (1, I -> 1,2 - 2,2 -), согласуются с предположением, согласно которому а) для отрыва атома водорода, как и для замещения, положение I более реакционноспособно, чем положение 2, и б) последовательность реакционной способности 1" и 2-положений в нафталине (1- > 2-) остается приблизительно одинаковой как для фенилирования, так и для нафтилирования. Предполагается, что радикалом, отрывающим атом водорода от нафталинового ядра, является бензоилокси-радикал, а не фенильный, так как среди продуктов реакции не обнаружено бензола. Таким образом, бензоилокси-радикал может реагировать с молекулой нафталина по двум направлениям с прямым замещением (путем присоединения с последующим отщеплением атома водорода) или с отрывом водорода. Вышеприведенный механизм подтверждается тем наблюдением, что, по-видимому, динафтилы не образуются в тех случаях, когда используемый источник фенильных радикалов не дает в качестве промежуточного соединения бензоилокси-радикала. Возможны и другие механизмы образования динафтила, но все они менее вероятны. [c.318]

    Если при разложении поливинилхлорида в результате термоокислительного процесса образуются перекисные соединения, то при одновременном отщеплении хлористого вощорода может развиваться цепной радикальный процесс дегидрохлорирования поливинилхлорида. С другой стороны, перекиси инициируют присоединение хлористого водорода к олефинам. Соответствующая аналогия может, очевидно, быть распространена и на поливинилхлорид при 140—190° С. Не исключено также, что при одной и той же температуре в зависимости от строения полимера атом хлора может, например, присоединяться по месту двойной связи к группам —СН = СН— в основной цепи с образованием радикала —СНС1—СН— (начало цепной реакции). [c.227]

    В радикальной полимеризации скорость роста цепи, т. е. скорость присоединения макрорадикала к двойной связи молекулы мономера, зависит исключительно от природы радикала и мономера, а также от температуры. Подразумевается, что свойства среды, природа первичных (инициируюш их) радикалов и другие факторы не влияют на константу скорости роста цепей. Таким образом, повлиять на константу роста цепи можно, только изменяя темпера туру процесса. Характерный пример — полимеризация этилена по радикальному механизму. При 20—80 °С скорость реакции роста цепи слишком низка по сравнению со скоростями конкурируюпщх реакций и только при температурах порядка 200—300 °С удается обеспечить достаточно высокие скорости процесса и молекулярный вес продукта (последний — за счет высоких концентраций мономера при давлении 1500—3000 ат). [c.77]

    Наряду с этим следует учитывать реакции деструкции обра- зовавшихся цепей под действием свободных радикалов (включая полимерные) и реакции макрорадикалов между собой, которые отличаются от реакции диспропорционирования или рекомбинации. Эти реакции были подробно рассмотрены в работах - . Если при одновременном росте и обрыве цепей устанавливается равновесное распределение Флори (16), то при одновременном росте и деструкции цепей происходит беспрерывное перераспределение мономерных звеньев и полимерных блоков между постоянным или изменяющимся числом макромолекул. Эти реакции межцепного обмена происходят, по-видимому, следующим образом. Растущий свободный радикал атакует какую-либо цепь полимера, присоединяясь к ней в середине, следующим актом является распад цепи вблизи места присоединения при этом образуются две новые цепочки, одна из которых активна и способна к новой атаке или рекомбинации. По другому варианту свободный радикал отрывает, например, атом водорода от какого-нибудь звена другой цепи эта цепь может затем распасться, причем одна из вновь образовавшихся цепей снова будет активна с конца и может рекомбинировать с другой такой же цепочкой или продолжить свой рост за счет мономера и лишь затем рекомбинировать. Даже если рекомбинация не является основным процессом, это взаимодействие блоков и мономеров долн<но осун ествляться за счет реакций первого типа ( собственно межцепной обмен ), [c.172]


Смотреть страницы где упоминается термин Реакции присоединения атомов Н и других радикалов: [c.255]    [c.252]    [c.273]    [c.354]    [c.341]    [c.239]    [c.341]    [c.255]    [c.354]    [c.855]    [c.717]    [c.227]    [c.302]    [c.239]    [c.364]    [c.318]    [c.502]    [c.300]    [c.107]    [c.364]   
ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Другие атомы

Присоединение радикалов

Реакции присоединения

Реакции радикалов



© 2025 chem21.info Реклама на сайте