Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводородная цепь, строение

Рис. XIV, 3. Строение линейной углеводородной цепи.. Рис. XIV, 3. <a href="/info/927193">Строение линейной</a> углеводородной цепи..

    Таким способом на Волгоградском НПЗ [95], по данным завода, из мангышлакской нефти удаляется более 50% хлорорганических веществ, разрушающихся при перегонке с выделением хлористого водорода, а из смеси волгоградских нефтей удаляется очень мало. Следовательно, содержащиеся в разных нефтях хлорорганические вещества не одинаковы по своему составу и строению. В одних нефтях очевидно содержатся хлорорганические соединения, хлор которых находится в ароматическом кольце молекулы, а в других - в боковой углеводородной цепи молекулы, Из органической химии известно, что соединения, у которых хлор находится в кольце молекулы, значительно труднее реагирует со щелочью, чем те соеданения, в которых хлор находится в углеводородной цепи. [c.124]

    Все многообразие зависимостей поверхностного натяжения от концентрации может быть представлено кривыми трех типов (рис. 43). Для поверхностноактивных веществ (ПАВ) характерны кривые типа 1. ПАВ менее полярны по сравнению с растворителем, обладают меньшим, чем растворитель, поверхностным натяжением. Интенсивность взаимодействия молекул растворителя с молекулами ПАВ меньше, чем молекул растворителя между собой. По отношению к воде, полярному растворителю, поверхностно-активными веществами являются органические соединения, состоящие из углеводородного радикала (гидрофобная или олеофильная часть) и полярной группы (гидрофильная часть) карбоновые кислоты, их соли, спирты, амины. Такое дифильное строение молекулы является характерным признаком ПАВ. Углеводородные цепи, не имеющие постоянного дипольного момента, гидрофобны, взаимодействуют с молекулами воды слабее, чем между собой, и выталкиваются на поверхность. Поэтому органические вещества, не обладающие полярной группой (например, парафины, нафтены), в воде практически нерастворимы. Полярные группы типа —ОН, —СООН, —NH и др. обладают высоким сродством к воде, хорошо гидратируются, и наличие такой группы в молекуле обусловливает растворимость ПАВ. Таким образом, растворимость ПАВ в воде зависит от длины углеводородного радикала (растворимость уменьшается с увеличением длины в гомологическом ряду). Например, карбоновые кислоты i — С4 неограниченно растворяются в воде растворимость кислот С5 — С12 заметно падает с ростом числа С-атомов, а при длине углеводородной цепи более i2 они практически нерастворимы. Увеличение длины углеводородного радикала молекулы ПАВ на одну СНа-группу приводит к увеличению поверхностной активности в 3,2—3,5 раза (это правило называется правилом Дюкло — Траубе). [c.205]


    К атомам кремния в виде боковых цепей присоединены углеводородные и другие органические радикалы различного строения. В зависимости от длины молекулярных цепей, строения и состава боковых цепей полисилоксаны имеют различные физические и химические свойства. [c.148]

    Не только термодинамическая устойчивость парафиновых углеводородов определяется их строением, в частности расположением метиль-ных групп. Длина углеводородной цепи и степень ее разветвления, положение метильных групп во многом определяют физические свойства парафинового углеводорода, в том числе температуру кристаллизации. Наличие в керосиновых, дизельных и других фракциях значительных количеств линейных парафиновых углеводородов обуславливает их высокую температуру кристаллизации. Наглядным примером служит зависимость температуры кристаллизации парафиновых углеводородов Сю— i6. имеющих различную структуру (рис. 4.3). Обращает на себя внимание общая закономерность, обнаруженная авторами работы [130], - ступенчатый рост температуры кристаллизации парафиновых углеводородов различных гомологических рядов. При перемещении метильной группы внутрь углеводородной цепи температура кристаллизации понижается, хотя это изменение носит неравномерный характер (рис. 4.4). Высококипящие парафиновые углеводороды в процессе гидроизомеризации претерпевают наиболее существенные превращения в продукты гидрокрекинга и изомеризации, и это обеспечивает значительное снижение температуры кристаллизации перерабатываемых фракций. [c.113]

    Скорость образования монохлорпроизводных алканов нормального строения возрастает с увеличением длины углеводородной цепи и уменьшается при ее разветвлении. [c.272]

    Свойства диэфиров зависят от их химической структуры. С увеличением длины углеводородной цепи повышаются вязкость и температура застывания и уменьшается угол наклона вязкостно-температурной кривой. Циклические группы вызывают значительное повышение вязкости, но ухудшают вязкостно-температурные характеристики диэфиров. Введение в молекулу боковых цепей понижает температуру застывания (см. табл. 33) и ухудшает вязкостно-температурную характеристику диэфиров. Наибольшее распространение в качестве смазочных масел получают диэфиры изомерного строения. [c.144]

    Прочность адсорбционной пленки и, следовательно, высокие смазывающие свойства жирной кислоты нормального строения зависят как от силы адгезии полярной группы к поверхности металла, так и от силы когезии между ее углеводородными цепями. По указанным параметрам такая кислота выгодно отличается от своего гомолога изостроения. [c.258]

    В одной из первых работ [I], позволивших выяснить строение карбамидного комплекса, исследовали строение комплексов гидрохинона с некоторыми летучими неорганическими соединениями (сероводород, сернистый ангидрид, хлористый водород и др.)- Было установлено, тто указанные комплексы представляют собой как бы кристаллическую клетку одного вещества (гидрохинона), в которую включены молекулы другого продукта. В дальнейшем сходство в строении комплексов гидрохинона и карбамида позволило считать, что молекулы карбамида образуют замкнутые пространства, в которых размешаются углеводородные цепи нормального строения. Это подтверждается и в работах других исследователей [5, 15 16].  [c.30]

    Поверхностно-активные вещества — это органические соединения, в молекулы которых входят одновременно полярная группа (например, ОН, СООН, МНа) и неполярная углеводородная цепь (рис. 25). Для большинства поверхностно-активных веществ характерно линейное строение молекул, длина которых значительно превышает поперечные размеры. Однако такая характеристика ПАВ является несколько ограниченной, так как лишена того содержания, которое вкладывается в этот термин в современной технической литературе. [c.55]

    Особенно много данных накопилось о влиянии строения, молекулярного веса и положения в углеводородной цепи заместителя на свойства углеводородов. Данные, которые позволяют сделать некоторые общие выводы, имеющие [c.33]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]


    Присутствие функциональных групп в углеводородных цепях нормального строения не препятствует образованию комплексов карбамида. [c.19]

    Специфическое строение углеводородной цепи на поверхности способствует переносу положительного заряда от одного центра к другому с умеренным энергетическим барьером. [c.82]

    Эти цепочки в значительной мере аналогичны строению углеводородной цепочки неразветвленного углеводорода. Известно, что в углеводородных цепях атомы углерода расположены также в виде зигзагообразной плоской цепочки с расстоянием С—С, [c.241]

    Алифатические (жирные) синтетические кислоты являются заменителем пищевых, преимущественно растительных жиров, используемых при изготовлении мыл, эмалей, лаков, олиф, консистентных смазок, пластификаторов для резины и других важных технических продуктов. В отличие от спиртов и кетонов — первичных продуктов распада гидроперекисей, имеющих такой же углеродный скелет, как и исходные углеводороды, кислоты, образующиеся при окислении, имеют различную длину углеводородной цепи их формирование сопровождается разрывом углеродного скелета молекулы окисляющегося углеводорода. Поэтому получается смесь кислот различного молекулярного веса, начиная с муравьиной. Окислением сырья, состоящего из углеводородов с определенным молекулярным весом, можно получать в основном фракции кислот, представляющих наибольшую ценность, например Сщ— ao Для производства моющих средств и С5—С9 для консистентных смазок. Выход товарных кислот на израсходованные алканы нормального строения составляет 77 —80 вес. %. При благоприятном составе сырья выход кислот Сю— jo равен 55—65, а С5—Сд — [c.286]

    Так как сравнению были подвергнуты максимальные скорости реакции окисления, которые определяются реакцией разветвления, и так как в работе принимается, что разветвляющим агентом являются перекиси, то влияние строения углеводородной цепи на скорость окисления авторы [c.325]

    Изомерия непредельных галогенопроизводных зависит от строения углеводородной цепи, положения в ней двойной связи и галогена. [c.100]

    Таким образом, поверхностная активность, следовательно, и адсорбируемость вещества зависят от природы полярной группы, строения молекулы и длины углеводородной цепи. Исследованиями установлено, что с удлинением цепи углеводородного соединения (например, кислоты) растворимость его в воде падает, что хорошо видно из приводимых ниже данных для кислот  [c.354]

    Нетрудно видеть, что для ионогенных ПАВ строение такого сферического агрегата полностью сходно со строением типичной коллоидной мицеллы. В самом деле, агрегированные углеводородные цепи, которые образуют как бы капельку жидкого углеводорода, играют в мицелле роль агрегата обычной мицеллы, а частично диссоциированные ионогенные группы, находящиеся в воде, образуют двойной электрический слой. [c.407]

    Строение кетоенолов и карбоновых кислот как в молекулярной, так и в ионной формах подобно. Различие состоит в том, что у кетоенолов гидроксильные и карбонильные грунны разделены углеводородной цепью с конъюгированной связью кетоенолы являются кислотами, несмотря на то что карбоксильной группы у них нет. Как у иона уксусной кислоты, так и у иона ацетилацетона отрицательный заряд может быть расположен у любого кислорода. [c.340]

    Предельные углеводороды разветвленного строения называют по самой длинной углеводородной цепи (главной цепи), а названия боковых ответвлений указывают приставками. Перед приставкой ставится номер атома углерода главной цепи, к которому присоединено боковое ответвление. Главная цепь нумеруется так, чтобы наименьшие номера имели атомы углерода с боковыми ответвлениями. Например  [c.254]

    Очевидно, что при целевой установке на получение углеводородов с максимально разветвленными цепями придерживаться относительно высоких температур (приводящих к значительному снижению температуры кипения исходного продукта за счет отщепления ме-тильных груши и выпрямления целей) — не льзя. Но это верно лишь за пределами известного температурного порога. До этого же порога нельзя отрицать целесообразность проведения изомеризации при повышенных температурах, так как повьппение температуры способствует передвижению двойной связи из а в р, т и т. д. положение. Но лшпь при передвижении двойной связи из а и р положение температура кипения повышается, при дальнейшем же передвижении двойной связи к центру молекулы температура кипения начинает заметно падать. Заметно падает она также и при всех разветвлениях цепи, причем обычно тем сильнее, чем более разветвленное строение получает углеводородная цепь. Но это последнее положение по види1мому не знает исключений лишь для парафиновых углеводородов. Что же касается олефиновых углеводородов, то хотя возможность распространения этого правила и на них не [c.75]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Известно, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство твердых углеводородов относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что форма кристаллов и в особенности их размеры в оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, зфтя и относящихся к разным классам, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов оказывает вязкость дисперсионной среды (масла) чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т. е. тем вероятнее возникновение новых центров кри- [c.150]

    Большую роль в кинетике экстракции солей металлов играет строение экстрагента, в частности длина углеводородной цепи в молекуле сульфида. Коэффициент распределения сильно изменялся в процессе экстракции индикаторных количеств урана (VI) и протактиния (V) из 7 М растворов соляной кислоты 0,1—0,25 М растворами диалкилсульфидов в четыреххлористом углероде. Максимальная величина коэффициента распределения достигалась при экстракции диоктилсульфоксидом [128]. [c.343]

    Ширные кислоты нормального строения, имеющие достаточно длинную неразветвленную углеводородную цепь, как и углеводороды, способны образовывать твердые кристаллические комплексы с карбамидом. Шленк и Хольман [305] установили, что комплексы с карбамидом образуют кислоты, начиная с масляной. Однако комплексы с кислотами низкого молекулярного веса очень непрочны п уже при комнатной температуре диссоциируют. Прочные кристаллические комплексы получаются, начиная с каприловой кислоты, имеющей в своей цепи восемь углеродных атомов. Кроме того, комплексы с карбамидом могут давать некоторые окси-и кето-кислоты, например 12-оксистеариновая, 12-кетостеарино-вая, 9-10-диоксистеариновая. В связи с этим комплексообразование с карбамидом может быть применено для выделения свободных жирных кислот из жиров, растительных масел, иолимеризованных жирных кислот, а также для разделения смесей жирных кислот и их производных. При этом их разделение может основываться на различии в длине цепи, степенях разветвленности и ненасы-щенности. [c.219]

    П./1а стификаторы в полимерных материалах выполняют своеобразную роль граничной сма-зки, облегчающей скольжение макромолекул друг относительно друга. На их пластифицирующее действие значительно влияет строение молекул нефтяных углеводородов (размеры и форма, число и тип колец, длина углеводородных цепей и полярность полимерного материала). В наибольшей степени улучшают морозостойкость резин (снижают температуру стемования) парафиновые и парафино-нафтеновые углеводороды. Однако они плохо совмещаются с полярными полимерами, замедляют вулканизацию каучуков и склонны к выпотева-нию из готовых изделий. [c.391]

    Алюмосиликатные катали шторы обладают очень пористой (радиус пор 40 А) и развитой поверхностью (до 400 м- на 1 г), что, объясняет до некоторой степени их активность. Кроме того, между строением этих катализаторов и углеводородов существует, видимо, геометрическое подобие. Расстояния между смежными атомами кислорода в решетке монтмориллонита составляют 2,55 А, что соответствует расстоянию между четными или нечетными атомами углерода в углеводородных цепях (2,54 А). Некоторые авторы считают, что адсорбированные цепи углеводородоп ориентированно располагаются вдоль ряда кислородных атомов монтмориллонита, параллельно или под углом 60°, перекрещиваясь при этом, что облегчает, разрыв цепей и образование разветвленных структур. [c.319]

    Органическая химия - наука о бесчетном разнообразии соединений специфического состава. Их основа - прежде всего углерод и водород, затем органогены (О, N, S, Р, На)) и, наконец, практически все эяементы, существующие в природе, входящие в состав органических молекул. Органические соединения сличаются, прежде всего, наличием углеводородного скелета самого различного строения (линейные и разветвленные углеводородные цепи, изолированные и конденсированные циклы и т.д.), а также налищем функциональных групп или гетероатомов в углеводородной цегги и циклах. [c.276]

    Качество готового продукта зависит от длины углеводородной цепи и ее строения, а также от положения сульфогруппы. Устапог,-лено, что сырье для производства вторичных алкилсульфатов долж но содержать углеводороды Св—С]з и в осповпом состоять из аль-фа-олефинов. [c.76]

    По мере повышения концентрации раствора размер мицелл увеличивается, и углеводородные цепи располагаются в них все более параллельно. В результате образуются пластинчатые мицел-ЛН , СостоТщие из двух слоев мыла, обращенных друг к другу углеводородными цепями, а ионогенными группами наружу. Эти мицеллы напоминают по своему строению двухмерный кристалл и могут иметь неограниченно большие размеры в двух направлениях. Вследствие образования пластинчатых мицелл и их характерного распределения в растворе достаточно концентрированные мыла способны переходить в гель ( 161). Заряд пластинчатых мицелл значительно ниже, чем сферических. Для доказательства наличия мгщелл в растворе можно применять метод ультрамикроскопии. Критическая концентрация мицеллообразования в растворах мыл может быть найдена измерением осмотического давле-, ния ц ещё лучше измерением электропроводности. Критическую концентрацию можно определять и по изменению поверхностного натяжения мыльного раствора при увеличении его концентрации. С увеличением концентрации раствора поверхностное натяжение всегда падает, достигая при критической концентрации предельного постоянного значения. [c.353]

    Наличие неподелениой пары электронов в кислороде гидроксильной группы обусловливает своеобразие диссоциатив-ИОЙ ПОПИЗаиии молекулы спирта вместе с тем определенную роль продолжает играть строение углеводородной цепи. [c.80]

    Рихаге и Штенхаген [203] исследовали масс-спектры 28 метиловых эфиров эпоксиоктадекановых кислот нормального строения. Положение функциональной группы в углеводородной цепи определяет направление распада молекулярного иона и образование специфических осколочных ионов. По этим признакам проводилась идентификация неизвестных соединений [c.123]

    Сравнивая уравнения (4.26) и (4.27), следует заключить, что гидрофобный специфический эффект в химотрипсиновом катализе сильно зависит от геометрии (пространственного строения) субстратной группы R (сравни коэффициенты при л в этих уравнениях). Наглядно это показано на рис. 42, где отложена величина специфического эффекта S от показателя гидрофобности я боковой субстратной группы R. Видно, что в общем случае специфический эффект проявляется при гидролизе лишь тех ацилферментов R—С(0)—Е, которые содержат в субстратном остатке нормальную (неразветвленную) алифатическую или фенилалкильную группу. Из этого следует, что гидрофобная полость в активном центре фермента, взаимодействующая с субстратной группой, представляет собой узкую щель ,в которую способна погрузиться только лишь линейная алифатическая или плоская арилалкильная углеводородная цепь молекулы субстрата. Геометрические свойства этой полости в активном центре не позволяют сорбироваться в ней разветвленным субстратным фрагментам. Во-вторых, наличие оптимума на кривой функции S—л (при п = 6, см. рис. 42, [c.149]

    Простейшим типом мицелл являются сферические мицеллы, постулированные Гартли. Они устойчивы в некоторой области концентраций, ненамного превышающих ККМ. На рис. 8 [10, с. 19] представлена схема сферической мицеллы, учитывающая характерные особенности ее строения. Мицелла представляет собой компактное образование с жидким з тлеводородным ядром Плотность его примерно равна плотности соответствующего жидкого углеводорода. Схема отражает тот факт, что углеводородные цепи благодаря интенсивному взаимодействию полярных групп с водой и тепловому движению могут быть частично втянутыми в водную фазу. Поэтому молярные головки молекул образуют неровную ( молекулярно шероховатую ) поверхность. По этой же причине часть метиленовых групп (по крайней мере, а-мети- [c.40]

    Характерная особенность пластинчатых мицелл — предельно высокая асимметричность их строения боковые грани мицелл образованы углеводородными цепями, граничащими с водной фазой, так что боковая поверхность мицелл обладает избытком межфазной энергии. Поэтому в растворах, содержащих пластинчатые мицеллы, возможно коагуляционное взаимодействие, при котором мицеллы контактируют боковыми гранями, образуя трехмерную структуру (пространственный каркас). Влияние таких пространственных мицеллярных структур проявляется в резком изменении структурно-механических свойств системы и солюбили- зирующей способности. [c.43]

    В уравнении (76) произведение пАШт характеризует вклад углеводородного радикала (Шд) в свободную энергию мицеллообразования. Любые изменения структуры радикала, влияющие на энергию его взаимодействия со средой, должны приводить к изменению Шд и, следовательно, величины ККМ по- сравнению с ПАВ, имеющими парафиновую углеводородную цепь с тем же числом атомов углерода. В табл. 2 представлены некоторые типичные примеры, характеризующие влияние строения углеводородного радикала на величину ККМ. [c.60]

    Строение мицелл. При критической концентрации мицеллообразования в системе из отдельных молекул ПАВ образуются так называемые мицеллы Гарт-ли. Эти мицеллы представляют собой сферические агрегаты, в которых углеводородные цепи молекулы переплелись, а полярные группы обращены наружу (в воду). Число молекул ПАВ в одном таком агрегате обычно находится в пределах 50—100, но может доходить и до 1000. Диаметр подобного сферического агрегата, по Гартли, примерно вдвое больще длины молекулы ПАВ, из которого он образован. [c.407]

    При более высоких концентрациях ПАВ в растворах образуются мицеллы уже иного строения. По мере повышения концентрации раствора размер мицелл увеличивается и углеводородные цепи располагаются в них все более и более параллельно друг другу. В результате образуются пластинчатые мицеллы, состоящие из двух слоев молекул ПАВ, обращенных друг к Другу углёводо-родньши цепями, а ионогенными группами Наружу. Эти мицеллы напоминают по своему строению двухмерный кристалл и могут иметь неограниченно большие размеры в двух направлениях. Пластинчатые мицеллы ионогенных ПАВ заряжены гораздо более слабо, чем сферические, поскольку при сравнительно высокой концентрации ПАВ, при которой они образуются, уменьщается [c.407]

    Молекулы нафтеновых и жирных кислот имеют асимметричнополярное строение и состоят из полярной группы СООН и длинного неполярного углеводородного радикала. Такие молекулы при адсорбции ориентируются своими полярными группами к частицам цемента и зернам заполнителей, адсорбировавших ионы кальция углеводородные же радикалы при этом обращены наружу. Эти углеводородные цепи гидрофобны, не смачиваются водой, между их концами, образованными метильными группами, существуют лишь сравнительно слабые силы притяжения. Плоскости, образованные метильными группами, являются плоскостями скольжения, если внешняя сила действует касательно к плоскостям (рис. 44), что имеет место при перемешивании, вибрировании, прокате и других механических воздействиях на бетонную смесь. [c.169]


Смотреть страницы где упоминается термин Углеводородная цепь, строение: [c.15]    [c.164]    [c.182]    [c.88]    [c.14]    [c.401]    [c.165]   
Курс коллоидной химии (1976) -- [ c.423 ]




ПОИСК





Смотрите так же термины и статьи:

Дамаскин. Строение двойного слоя на ртутном электроде при I адсорбции жирных кислот. I. Влияние длины углеводородной цепи и кон- I центрации фона



© 2025 chem21.info Реклама на сайте