Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протеинкиназа цАМФ-зависимые

    Под действием киназы фосфорилазы Ь, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы Ь подвергаются ковалентному фосфорилированию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние. [c.292]


    Фосфорилирование гликогенсинтазы осуществляет та же протеинкиназа, которая активирует киназу фосфорилазы Ь. В тканях локализовано семейство различных цАМФ-зависимых протеинкиназ. В жировой ткани обнаружены рецепторы катехоламинов. Активация одной из протеинкиназ вызывает фосфорилирование и активацию липазы и, как следствие, стимуляцию липолиза. [c.157]

    Лимитирующей стадией процесса трансляции является ее инициация. Наиболее подробно описан процесс изменения скорости инициации трансляции в результате фосфорилирования фактора инициации №2. Реакция катализируется ферментом 1р2-киназой, причем присоединение фосфатной группы инактивирует фактор инициации. Этот феномен был изучен на примере синтеза гемоглобина в ретикулоцитах. Сначала было установлено, что глобин синтезируется только в присутствии гема. Затем была выстроена вся система регуляции синтеза глобина. Оказалось, что активация ХР -киназы происходит за счет ее фосфорилирования цАМФ-зависимой протеинкиназой. Взаимодействие этой протеинкиназы с цАМФ и ее активацию блокирует гем, выполняя тем самым негативный контроль синтеза гемоглобина. [c.475]

    Моноклональные антитела к растворимому белковому антигену IgG к регуляторной субъединице цАМФ-зависимой протеинкиназы).  [c.325]

Рис. 16.2. Гормональная регуляция системы фруктозо-2,6-бисфосфата (Ф-2,6-Р,) в печени при участии цАМФ-зависимых протеинкиназ. Рис. 16.2. <a href="/info/1898069">Гормональная регуляция системы</a> фруктозо-2,6-бисфосфата (Ф-2,6-Р,) в печени при участии цАМФ-зависимых протеинкиназ.
    ИЗУЧЕНИЕ СВОЙСТВ цАМФ-ЗАВИСИМЫХ ПРОТЕИНКИНАЗ  [c.330]

    Получение цАМФ-зависимой протеинкиназы из скелетных мышц [c.330]

    Катализируется эта реакция ферментом, который называется киназой фосфорилазы Ь. Установлено, что эта киназа может существовать как в активной, так и в неактивной форме. Неактивная киназа фосфорилазы превращается в активную иод влиянием фермента протеинкиназы (киназа киназы фосфорилазы), и не просто протеинкиназы, а цАМФ-зависимой протеинкиназы. [c.326]

    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]


    Молекула киназы фосфорилазы состоит из субъединиц четырех типов ар б. Молекулярная масса фермента — 1,3-10 Да — отвечает формуле (аРуб)4- Киназа фосфорилазы играет, как показано, ключевую роль в регуляции обмена гликогена и в сопряжении гликогенолиза и мышечного сокращения. В скелетной мускулатуре она существует в двух молекулярных формах нефосфорилированной ( неактивированная ) и фосфорилированной ( активированная ). Первая активна лищь при pH 8,2, вторая — при pH 6,8 и 8,2. При активации фермента отнощение активностей, измеренных при pH 6,8/8,2, возрастает от 0,05 до 0,9—1,0. Активация киназы достигается фосфорилированием а- и р-субъединиц, которое катализирует цАМФ-зависимая протеинкиназа. Каталитическую роль выполняет -субъединица б-субъединица идентична a +- вязывaющeмy белку — кальмодулину. Ферментативная активность киназы фосфорилазы полностью зависит от ионов На р-субъединице фермента имеется регуляторный центр, обладающий высоким сродством к АДФ. Константа Михаэлиса для АТФ равна [c.223]

    Регуляторная субъединица цАМФ-зависимой протеинкиназы из мозга (НП). [c.326]

    После связывания IP3 происходит значительная конформационная перестройка рецептора, приводящая к активации канала. По до.менной модели [Рз-рецептора субъединицы рецептора взаимодействуют с помощью нековалентны.х связей субъединиц в области С-концов, содержащих трансмембранные фрагменты. Эти фрагменты в большой степени гомологичны рианодиновому рецептору и образуют, по-видимому, управляемый a -KaHan. Аминокислотная последовательность между 1Рз-связывающим доменом и Са -каналом служит мишенью для регуляторных факторов, так как участок цАМФ-зависимого фосфорилирования рецептора расположен, по-видимому, в этой области. Предполагают, что участками фосфорилирования 1Рз-рецептора цАМФ-зависимой протеинкиназой являются остатки серина в положения.х 1755 и 1589 (Mignery, Sudhof, 1990). [c.98]

    Целью работы является получение в частично очищенном состоянии нативного холофермента цАМФ-зависимой протеинкиназы, определение его цАМФ-связывающей активности, изучение способности диссоциировать под действием цАМФ и определение фосфотрансферазной активности свободной С. [c.330]

    Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков 1) рецептор гормона 2) фермент аденилатциклаза, выполняющая функцию синтеза циклического АМФ (цАМФ) 3) G-белок, осуществляющий связь между аденилатциклазой и рецептором 4) цАМФ-зависимая протеинкиназа, катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность 5) фосфодиэстераза, которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала (рис. 8.5). [c.290]

    Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкиназой С. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде (мол. масса 80000). Он состоит из 2 субъединиц -каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуляторного домена, сходного с К-субъединицей протеинкиназы А (см. ранее). Однако протеинкиназы А и С узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треони- [c.295]

    Активность бифункционального фермента регулируется также некоторыми метаболитами, среди которых наибольшее значение имеет гли-церол-З-фосфат. Действие глицерол-З-фосфата на фермент по своей направленности аналогично эффекту, который наблюдается при его фосфорилировании с помощью цАМФ-зависимых протеинкиназ. [c.342]

    Установлено, что тропонин (его субъединицы Тн-Т и Тн-1) способен фосфорилироваться при участии цАМФ-зависимых протеинкиназ. Вопрос о том, имеет ли отношение фосфорилирование тропонина in vitro к регуляции мышечного сокращения, остается пока открытым. [c.650]

    Катализируется эта реакция ферментом киназой фосфорютазы Ь, который также существует как в активной, так и неактивной формах. Активация киназы фосфорилазы Ь происходит подобно активации фосфорилазы, т. е. путем ее фосфорилирования, которое катализируется цАМФ-зависимой протеинкиназой (гл. 13). Важная роль в активации киназы фосфорилазы принадлежит также Са " -кальмодулину — белку, участвующему в регуляции активности многих киназ (гл. 13). Активация протеинкиназы при участии цАМФ, который, в свою очередь, образуется из АТФ в реакции катализируемой аденилатциклазой, стимулируется гормонами адреналином и глюкагоном. Увеличение содержания этих гормонов приводит в результате каскадной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом протеинфосфатазой. На рис. 18.6 приведен каскадный механизм мобилизации гликогена. Активация первого фрагмента каскада — аденилатциклазы — в конечном счете активирует распад гликогена и одновременно ингибирует фермент его синтеза — гликогенсинтазу (гл. 20). Следовательно, фосфорилирование гликогенфосфорилазы и гликогенсинтазы приводит к противоположным изменениям их активности гликогенсинтаза ингибируется, а гликогенфосфорилаза активируется, что вызывает повышение содержания глюкозы в мышцах, печени и крови, т. е. происходит быстрое включение реакций, поставляющих энергию. [c.251]


    Затем цАМФ-зависимая протеинкиназа фосфорилирует неактивную форму киназы гликогенфосфорилазы (1), которая, в свою очередь, участвует в реакции фосфорилирования неактивной формы гликогенфосфо-рилазы (2)  [c.402]

    Конечные стадии передачи сигнала с помощью цАМФ осуществляются с участием цАМФ-зависимых протеинкиназ (протеинкиназ А), которые фосфорилируют определенные белки-мищени по остаткам серина или треонина. [c.17]

    Следует подчеркнуть, что изменения оказываются однотипными для различных по химической природе радиопротекторов. Среди многочисленных процессов, контролируемых системой цАМФ, наибольший интерес могут представлять процессы, формирующие эндогенный фон радиорезистентности. К их числу, по-видимому, относится цАМФ-зависимый эффект увеличения содержания тиолов в клетках под влиянием радиопротекторов. Этому вопросу посвящена серия работ, выполненных В. И. Кулинским и его сотр. По их мнению, катехоламины, увеличивающие в радиочувствительных тканях уровень тиолов, активируют НАДФН-дисульфид-редуктазу, что приводит к возрастанию в клетках количества восстановленных сульфгидрильных групп и повышает их радиорезистентность. В этот процесс возможно вовлечение цАМФ-зависи-мых протеинкиназ, что позволяет авторам таким об разом детализировать схему участия цАМФ в противолучевом эффекте катехоламины — адренорецептор — аденилатциклаза — цАМФ — протеинкиназа — дисульфидредуктаза — увеличение в клетках содержания тиолов — радиопрофилактический эффект. При этом [c.296]

    Протеинкиназа осуществляет цАМФ-независимое фосфори-лирование белков хроматина. Ее активность в ядрах нейронов значительно выше, чем в ядрах глиальных клеток. При действии ряда нейромедиаторов на нейроны мозга крыс наблюдается фос4юрилирование ядерных белков и стимуляция синтеза РНК. Фосфорилирование части негистоновых (так называемых НМО) белков индуцируется в клетках верхнего шейного ганглия при действии фактора роста нервов. В хромаффинных клетках надпочечников фосфорилирование негистоновых белков хроматина цАМФ-зависимой протеинкиназой является центральным звеном в транссинаптической регуляции синтеза тирозин-З-мо-нооксигеназы ацетилхолином. Показано, что фосфорилирование негистоновых белков хроматина повышается при выработке оборонительных условных рефлексов. [c.18]

    Через 10 лет после открытия Сазерлендом цАМФ была обнаружена цАМФ-зависимая протеинкиназа, значительно повышающая скорость фосфорилирования субстратов в присутствии цАМФ. Реакция протеинфосфорилирования выглядит следующим образом  [c.337]

    Сушествование эквивалентных количеств каталитических и регуляторных субъединиц цАМФ-зависимой протеинкиназы во многих тканях привело к представлению о том, что единственная функция регуляторной субъединицы —контроль протеинкиназной активности. Однако регуляторная субъединица может существовать отдельно от каталитической в некоторых типах клеток, например в клетках нейробластомы. Это указывает на возможность проявления биологического действия регуляторной субъединицы независимо от каталитической. Далее будет рассмотрена такая возможность на примере изменения проницаемости мембран нейронов для Ка" и К" в присутствии Р-субъединицы. Надо также иметь в виду, что х ШФ-связываю-щие белки, не ассоциированные с протеинкиназой, могут регулировать активность последней путем модулирования уровня свободного циклического нуклеотида, способного присоединяться к протеинкиназе. [c.338]

    Каталитические субъединицы киназ I и II типа имеют молекулярную массу 40 кЦ и минимальные различия в аминокислотном составе. Напротив, регуляторные субъединицы киназ I и II типа значительно отличаются по первичной структуре. Вероятно, субъединица Р I типа — 49 кД — является протеолитиче-ским фрагментом Р II типа с молекулярной массой 55 кД. Один из сериновых остатков Р-субъединицы II типа фосфорилирует-ся каталитической субъединицей цАМФ-зависимой протеинкиназы. Очищенная же Р-субъединица I типа не фосфорилиру-ется каталитической субъединицей цАМФ-зависимой протеинкиназы. Другим отличием киназы I типа от II типа является то, что только первый фермент связьшает М -АТФ с высоким сродством. [c.339]

    Ряд белков (эффекторов) осуществляет свои функции в результате фосфорилирования цАМФ-зависимыми протеинкиназами. Молекула протеинкиназы состоит из двух субъединиц регуляторной и каталитической. цАМФ связывается с регуляторной субъединицей, после чего происходят отделение каталитической субъединицы и фосфорилирование соответствующего белка. С другой стороны, цАМФ часто используется в клетке для активации другого вторичного мессенджера — ионов Са +. Так, адреналин приводит к повыщению концентрации в клетке миокарда цАМФ, которая открывает кальциевый канал, а вход в миоцит Са-+ усиливает сокращение сердечной мыщцы. Аналогичный механизм обнаружен в ряде мыщечных клеток, в секреторных и нервных клетках. Роль кальция как внутриклеточного регулятора была описана в 1883 г. английским физиологом и медиком С. Рингером. Он обнаружил, что Са + необходим для сокращения мыщечной ткани. В настоящее время Са + признан универсальным вторичным мессенджером, участвующим практически во всех регуляторных процессах — от мышечного сокращения и нервного проведения до передачи митогенного стимула в клетках иммунной системы. Низкая концентрация в клетке Са + поддерживается низкой проницаемостью биомембран для этого иона и постоянной работой Са-АТФаз (см. гл. III. 2.2). Резкое изменение в клетке концентрации Са + происходит за счет специальных кальциевых каналов, которые в ответ на соответствующий стимул (деполяризация, изменение концентрации Са + и т. д., см. гл. III.3), открываются и высвобождают Са + из внеклеточного пространства или из внутриклеточных депо, которыми служат цистерны эндоплазматического ретикулума и иногда мембраны митохондрий. Резко увеличить проницаемость мембран для Са + в ответ на внешний стимул может не только цАМФ (по-видимому, за счет фосфолирирования определенной субъединицы кальциевого канала), но и гидролиз мембранных липидов (рис. 51). [c.147]

    При исследовании локализации фосфорилирующих систем в ЦНС установлено, что цАМФ-зависимая система избирательно сконцентрирована в нейронах, особенно в девдритах, а не в глии. Мозг крысы содержит как I, так и и II форму протеинкиназы А при соотношении этих форм 1 4 соответственно. Высокое содержание А-киназы II типа по сравнению с ферментом I типа вообще характерно для нервной ткани. Недавно установлена гетерогенность Р-субъединиц А-киназы II типа. При этом в мозге выявлена собственная, специфичная Р П-субъединица, отличная по иммунохимическим свойствам от Р-су единиц II типа в других тканях. Р II мозга отличается от Р II мышц по характеру взаимодействия с К-субъединицей, а также по электрофоретической подвижности аутофосфорилированных форм. Показано, что фракция Р-субъединиц II типа мозга взаимодействует с Са " и кальмодулином. Необычные свойства Р П-субъ- [c.339]

    Отметим, что протеинкиназа А в нервной ткани регулирует также чувствительность р-адренорецепторов к агонистам. Так, десенситизация этих рецепторов (потеря чувствительности к гормонам) коррелирует с их цАМФ-зависимым фосфорилированием. Установлена также регуляция А-киназой биосинтеза самих р-агонистов. Эта регуляция осуществляется с помощью цАМФ-зависимого фосфорилирования тирозингидроксилазы — узлового фермента биосинтеза катехоламинов. Такое фосфорилирование может бьггь составной частью механизма ускорения биосинтеза катехоламинов в ответ на нервный импульс или секрецию нейромедиаторов в нервной ткани в условиях in vivo. [c.343]

    Анализ регуляторных свойств фосфодиэстеразы в нервной ткани свидетельствует о тесном сопряжении между цАМФ- и Са-зависимыми системами внутриклеточной сигнализации это сопряжение может модулироваться с помощью изоферментов фосфодиэстеразы. Так, в мозге быка найдены 2 изоформы Са-КМ-зависимой фосфодиэстеразы, состоящей из субъединиц с = 60 и 63 кД. Изофермент с субъединицами 60 кД может быть фосфорилирован цАМФ-зависимой протеинкиназой, что приводит к уменьщению сродства фосфодиэстеразы к кальмодулину. Дефосфорилирование этого изофермента осуществляет Са-КМ-стимулируемая протеинфосфатаза при этом восстанавливается чувствительность фосфодиэстеразы к кальмодулину. [c.346]

    Важную роль в функционировании нейронов играет совместное фосфорилирование протеинкиназами А II типа и В II типа высокомолекулярного (М = 270 кД) белка МАР-2, сконцентрированного в дендритах нейронов. Как упоминалось, именно здесь локализована Р-субъединица А-киназы II типа, которая обладает высоким сродством к МАР-2 и является своеобразным якорем цАМФ-зависимой фосфорилирующей активности в дендритах. МАР-2 участвует в сборке микрбтрубочек фосфорилирование этого белка киназами В и АII типа контролирует процесс сборки и, таким образом, может модулировать функциональную активность нейронов. МАР-2 фосфорилирует также протеинкиназа С роль этого процесса в функционировании нейронов выясняется. [c.353]


Смотреть страницы где упоминается термин Протеинкиназа цАМФ-зависимые: [c.334]    [c.182]    [c.238]    [c.326]    [c.326]    [c.330]    [c.554]    [c.570]    [c.276]    [c.85]    [c.99]    [c.299]    [c.79]    [c.82]    [c.339]    [c.341]    [c.342]    [c.347]    [c.347]    [c.364]   
Биологическая химия Изд.3 (1998) -- [ c.326 ]




ПОИСК







© 2025 chem21.info Реклама на сайте