Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт внутриклеточный в хлоропласта

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]


    Внутренняя цитоплазматическая мембрана не только окружает митохондрии и хлоропласты, но также образует исключительно сложную сеть — эндоплазмати-ческий ретикулум. Эта сеть участвует в различных внутриклеточных транспорт ных процессах, а также в образовании специальных отделений — компартментов, [c.25]

    Вернемся теперь к синтезу АТР. Подавляющая часть молекул АТР (около 85 %) в животных бактериальных и растительных клетках синтезируются в мембранных внутриклеточных структурах (мембранное фосфорилирование). В аэробных организмах непосредственными источниками энергии (энергодонорные процессы) являются определенные стадии окисления пищи. В растениях и фотосинтезирующих бактериях первичными источниками явшяются, конечно, кванты света, энергия которых, после возбуждения хлорофилла, превращается в энергию в окислительно-восстановительных цепях электронного транспорта (ЦЭТ) в тилакоидных мембранах хлоропластов. [c.90]

Рис. 8-4. Гипотезы эволюционного происхождения митохондрий, хлоропластов, ЭР и клеточного ядра, объясняющие топологические взаимоотношения этих внутриклеточных компартментов в эукариотических клетках. А. Митохондрии и хлоропласты могли возникнуть при поглощении бактерий эукариотической клеткой. С помошью этой гипотезы можно объяснить, почему полость перечисленных выше органелл остается изолированной от обширного везикулярного транспорта, связывающего полости многих других внутриклеточных компартментов. Б. Рис. 8-4. Гипотезы <a href="/info/1402988">эволюционного происхождения</a> митохондрий, хлоропластов, ЭР и <a href="/info/610972">клеточного ядра</a>, объясняющие топологические взаимоотношения этих внутриклеточных компартментов в <a href="/info/104367">эукариотических клетках</a>. А. Митохондрии и хлоропласты могли возникнуть при <a href="/info/97198">поглощении бактерий</a> <a href="/info/104367">эукариотической клеткой</a>. С помошью этой гипотезы <a href="/info/1904363">можно объяснить</a>, почему полость перечисленных выше органелл остается изолированной от обширного <a href="/info/1413171">везикулярного транспорта</a>, связывающего полости <a href="/info/1633379">многих других</a> внутриклеточных компартментов. Б.
    Внутриклеточный транспорт метаболитов С4-цикла в клетках обкладки проводящих пучков проще всего, по-видимому, устроен у NADP-МДГ-растеиий. В хлоропластах обкладки проводящих пучков находится NADP-МДГ (декарбоксилирующая) [c.357]

    У этих растений внутриклеточный связанный с С4-ЦИКЛ0М транспорт метаболитов в клетках обкладкн проводящих пучков включает в себя метаболизм соединений углерода и в цитозоле, и в митохондриях. Главным механизмом транспорта является челночный обмеи аспартат— алании. В этом случае необходим транспорт аспартата, пирувата, 2-оксоглутарата и глутамата в митохондрии клеток обкладки проводящих пучков (рис. 12.9). Число митохондрий в этих клетках очень велико (рис. 11.7, Б). У NAD-МДГ-растений может функционировать и вспомогательный цикл, в результате которого обмениваются малат и пируват. Для этого цикла необходим транспорт малат — оксалоацетат в хлоропластах по схеме, представленной на рис. 12.10. [c.359]


    Внутриклеточный транспорт. Выход ассимилятов из хлоропластов. В каждом хлоропласте за день количество образовавшихся в процессе фотосинтеза продуктов превосходит их собственную массу. В этой связи большое значение имеет отток ассимилятов в другие части клетки, т. е. внутриклеточный транспорт. Наиболее легко через мембраны хлоропластов пропикаюттриозофосфаты (ФГА, ФДА), которые могут и выходить из хлоропластов, и вновь поступать в аих. Проникновение через мембрану хлоропластов фосфорилироваппых гексоз затруднено. Предполагается, что образующиеся в хлоропластах более сложные углеводы распадаются иа триозофосфаты и в таком виде передвигаются в цитоплазму, где могут служить материалом для ресинтеза гексоз, сахарозы и крахмала. Благодаря указанным превращениям концентрация триозофосфатов в цитоплазме непрерывно снижается, что способствует их притоку по градиенту концентрации. Образовавшиеся в хлоропластах белни также распадаются в оттекают в цитоплазму в виде аминокислот. На свету проницаемость мембран хлоропластов повышается, что способствует оттоку из них различных веществ. [c.186]


Смотреть страницы где упоминается термин Транспорт внутриклеточный в хлоропласта: [c.34]    [c.357]    [c.506]    [c.34]    [c.10]    [c.109]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Хлоропласт



© 2025 chem21.info Реклама на сайте