Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны цитоплазматические ЦПМ

    Цитоплазма бактерий. Все содержимое клетки, ограниченное клеточной стенкой, называется протопластом. Протопласт состоит пз цитоплазматической мембраны и живого вещества клетки — цитоплазмы, или протоплазмы. Цитоплазма бактерий является бесцветной, прозрачной, слегка вязкой. [c.249]

    Большая часть фосфолипидов бактерий образуется путем превращения фосфатидных кислот в DP-диглицериды (рис. 12-8, реакция е). Последние вступают в реакцию с различными нуклеофилами, что сопровождается высвобождением СМР. В частности, при взаимодействии с L-серином образуется фосфатидилсерин (реакция ж), а при реакции с инозитом (реакция и) синтезируется фосфатидилинозит. Фермент катализирующий образование фосфатидилсерина, по имеющимся данным, связан с рибосомами [60, 61]. В противоположность этому большая часть других ферментов биосинтеза фосфолипидов включена в состав цитоплазматической мембраны или тесно с ней связана. Один из мембраносвязанных ферментов катализирует декарбоксилирование фосфатидилсерина с образованием фосфатидилэтаноламина (реакция з . рис. 12-8) [63]. Хотя фосфатидилхолин не относится к основным компонентам липидов бактерий, однако он может быть синтезирован из фосфатидилэтаноламина путем трехступенчатого трансметилирования-с использованием S-аденозилметионина в качестве донора метильных групп. [c.556]


    Форма и строение митохондрий у различных микроорганизмов неодинаковы. Даже у одной и той же культуры при различных условиях и фазах роста форма и величина митохондрий меняется. В клетках дрожжей, перенесенных из аэробных условий в анаэробные, митохондрии теряют выраженную форму и образуются мембраны неопределенной формы. В бактериях функцию митохондрий выполняют особые образования цитоплазматической мембраны — мезосомы. Следовательно, в клетках бактерий аналогами митохондрий являются мезосомы. Как число митохондрий, так и число мезосом меняется, оно резко возрастает перед процессом деления клетки. Мезосомы бактерий специализируются в выполнении различных функций. Некоторые из них [c.19]

    Влияние активной реакции среды. Каждый микроорганизм может жить лишь при определенной реакции среды. Влияние pH среды на активность микроорганизмов обусловлено взаимодействием ионов водорода с ферментами, находящимися в цитоплазматической мембране и в клеточной стенке. Изменение концентрации водородных ионов во внешней среде не сказывается на концентрации их в цитоплазме, так как цитоплазматическая мембрана непроницаема для ионов водорода и гидроксила. [c.285]

    В клетках эукариотов ядра имеют различную форму и размеры. Их окружает оболочка, внешняя элементарная мембрана, которая связана с эндоплазматической сетью, цитоплазматической мембраной или мезосомами. В ядерной оболочке обнаружены сравнительно большие поры. Бактерии принадлежат к группе прокариотных микроорганизмов, у которых ядро не выражено, но имеется его аналог — нуклеоид или даже диффузное распределение ядерного вещества в протоплазме. [c.20]

    Химический состав клеточной стенки микроорганизмов различных групп неодинаков. Он изменяется и в зависимости от условий культивирования. Механически и химически клеточная стенка является очень прочным образованием. Она сохраняет форму клетки и поддерживает нужное осмотическое давление в ней, а также принимает участие в транспорте веществ. В отличие от цитоплазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.15]

    Внутренняя поверхность цитоплазматической мембраны граничит с цитоплазмой, которая представляет собой коллоидный раствор углеводов, аминокислот, ферментов, минеральных и других веществ в воде. Вязкость цитоплазмы в 800 раз выше вязкости воды. При старении клеток вязкость цитоплазмы увеличивается, в ней появляются мелкие гранулы и вакуоли. В цитоплазме находятся важнейшие клеточные органоиды — ядро, митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи и др. В них протекают все ферментативные процессы жизни. [c.18]


    Белки обеспечивают выполнение мембранами их специфических функций. Поэтому содержание и типы белков в различных мембранах значительно варьируют. Так, в миелиновой мембране, выполняющей функцию изолятора, белки составляют около 20 % массы мембраны. Цитоплазматическая мембрана животных [c.26]

    После проникновения в клетку хозяина элементарные тельца размножаются внутри цитоплазматической вакуоли, образованной инвагинацией мембраны клетки хозяина. Цикл развития начинается с увеличения размеров элементарных телец, в результате чего образуются крупные клетки сферической формы диаметром 0,8—1,5 мкм. Этот процесс сопровождается перестройкой внутриклеточной структуры. Резко возрастает содержание РНК в клетке, ядерный материал становится менее плотным, а клеточная стенка тонкой. Крупные клетки размножаются делением, и образование их представляет собой неинфекционную вегетативную стадию в цикле развития хламидий. Через несколько генераций после сформирования микроколонии размножение клеток прекращается, размеры их уменьшаются, формируются электронно-плотный ядерный материал и трехслойная клеточная стенка. Клетки превращаются в зрелые инфекционные элементарные тельца. После разрущения мембраны цитоплазматической вакуоли и стенки клетки хозяина элементарные тельца покидают клетку, проникают в [c.156]

    У апикального края гранулярной зоны гранулы, содержащие железо, оказываются в тесном соседстве с микроворсинками (рис. 16.11 и 16.15). Только в пределах этой особой области нам удалось наблюдать структуру из двойной мембраны, тесно примыкающую к внутренней поверхности плазматической мембраны цитоплазматического чехла, окружающего пучок микроворсинок (рис. 16.15). Такая же структура имеется и в цитоплазматических тяжах, описанных ранее. Детальные исследования показали, что эта структура идентична цистернам эндоплазматического ретикулума (рис. 16.15,5). Рибосомы ассоциированы только с цитоплазматической поверхностью внутренней мембраны (рис. 16.15,5) на наружной мембране они отсутствуют. Расстояние между наружной [c.115]

    В результате центрифугирования появляются два отчетливых слоя на границах плотностей сахарозы 1,20— 1,18 и 1,18—1,16. Плазматические мембраны выделяются в зоне между растворами сахарозы с плотностями 1,18 и 1,16. Между растворами сахарозы с плотностями 1,20 и 1,18 концентрируются мембраны цитоплазматической сети и фрагменты митохондрий. На поверхности жидкости обычно образуется жировая пленка, на дно пробирки оседают фрагменты ядер и митохондрии, а также неразрушенные клетки. [c.328]

    Она выдерживает значительное осмотическое давление, обусловленное растворимыми веществами, содержащимися внутри хруп кой цитоплазматической мембраны. [c.247]

    Кроме того, замена ферментных препаратов целыми клетками, цитоплазматическая мембрана которых защищает локализованные внутри клетки ферменты от неблагоприятного действия компонентов реакционной [c.81]

    Существует достаточно много способов разрушения клеток центрифугирование, замораживание-оттаивание, изменение осмотической силы раствора. Можно работать с грубой мембранной фракцией (клеточные мембраны, ядерные мембраны, мембраны цитоплазматических органел) или с конкретными мембранами. При отсутствии каких-либо предпочтений следует выбрать тот способ разрушения клеток, при котором специфическое связывание будет наилучшим образом совпадать с клеточным специфическим связыванием. Если на целых клетках наблюдаются высокие величины неспецифического связывания, то следует выбрать тот способ разрушения клеток, при котором неспецифическое связывание будет наименьшим. [c.474]

    Сопряженное с синтезом АТФ окисление НАДН в дыхательной цепи митохондрий представляет собой один из путей утилизации восстановительных эквивалентов клетки. Внутренняя мембрана митохондрий непроницаема для пиридиннуклеотидов и добавленный НАДН может быть окислен в дыхательной цепи только после разрушения внутренней мембраны. Однако в клетке существуют специальные челночные механизмы , которые обеспечивают окисление цитоплазматического НАДН дыхательной цепью и не требуют его переноса через внутреннюю мембрану митохондрий. [c.437]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]


    Уже давно было отмечено, что свободные полирибосомы продуцируют в основном водорастворимые белки для внутренних потребностей самой цитоплазмы, в то время как мембраносвязанные частицы синтезируют либо белки для мембран, либо секреторные белки, выводимые через мембраны из клетки. Очевидно, что растворимые цитоплазматические белки, синтезируемые на свободных полирибосомах, сворачиваются по мере выхода из рибосомы в водном окружении, в результате формируя типичную глобулярную структуру с гидрофобным ядром внутри и более или менее полярной поверхностью. В то же время, синтез белков на мембраносвязанных рибосома х приводит к тому, что растущий пептид вводится в контакт с гидрофобным окружением липидного бислоя мембраны, и значит, должен сворачиваться, по крайней [c.274]

    Идея о том, что синтез белков на мембраносвязанных рибосомах сопряжен с трансмембранным транспортом белков, возникла из наблюдений по тесной ассоциации растущих полипептидных цепей с мембраной шероховатого эндоплазматического ретикулума в эукариотических клетках или с внутренней цитоплазматической мембраной бактерий. Транслирующие рибосомы оказались прочно заякоренными на мембране растущим пептидом, и лишь обработка пуромицином, приводящая к аборту пептида из рибосомы, позволяла диссоциировать комплекс на интактные рибосомы и мембраны, оставляя пептид в мембране. Таким образом, стало ясно, что существенный вклад в ассоциацию транслирующей рибосомы с мембраной вносит сам растущий пептид. В бактериях разрыв этого якоря пуромицином приводит к немедленному освобождению рибосом от мембраны, откуда делается вывод, что растущие пептиды являются единственным прочным соединением полирибосом с цитоплазматической мембраной. [c.275]

    Транспорт веществ возможен также посредством пиноцитоза. Цитоплазматическая мембрана способна образовывать складки, инвагинации, которые захватывают частички веществ. После этого пиноцитозный пузырек с заключенным в нем веществом отходит от мембраны, попадает в протоплазму, где мембрана пузырька разрушается и вещество переходит в протоплазму. [c.17]

    Цитоплазматические мембраны бактерий, зараженные ткани [c.217]

    От внешней среды клетку отделяет оболочка 2, под которой находится цитоплазматическая мембрана 3. Цитоплазма содержит органоиды — ядро I, митохондрии, мезосомы 4, рибосомы и т. д. (рис. 4). На рисунке показана растущая клеточная перегородка 5. [c.13]

    Цитоплазматическая мембрана (плазмолемма) Клеточная стенка [c.14]

    При исследовании неизвестных бактерий используется дифференциальный метод окраски по Граму, заключающийся в окраске микроорганизмов метиловым фиолетовым с последующей обработкой иодом. Окрашенные таким образом бактерии, необесцвечивающиеся спиртом, называют грамположительными, а бактерии, обесцвечивающиеся под действием спирта, называют грамотрицательными. Способность окрашивания по Граму зависит от свойств клеточной оболочки и цитоплазматической мембраны. Краситель и иод проникают во внутрь всех клеток, но у грамположительных образуется более устойчивое окрашенное соединение, чем у грамотрицательных. Установлен ряд существенных различий между свойствами этих микроорганизмов. (Например, отношение РНК/ДНК у грамположительных 8 1, а у отрицательных 1 1 содержание жиров у первых низкое, а у вторых — высокое.) Кроме окраски изучают морфологические, биохимические и другие свойства иеиэвестных микроорганизмов, [c.287]

    Цитоплазматическая мембрана отделяет протоплазму от клеточной стенки. Она рассматривается как главный определитель осмотического давления, транспорта веществ и проницаемости в клетке. Поверхность цитоплазматической мембраны складчатая, ее толщина 8 нм. В настоящее время господствует мнение, что цитоплазматическая мембрана построена из бимолекулярного [c.15]

    Похожая добавочная N-концевая последовательность оказалась свойственной и растущим цепям ряда бактериальных белков, выводимых (экспортируемых) из цитоплазмы (см. табл. 3). В случае грамотрицательных бактерий этот экспорт белков происходит, либо в периплазматическое пространство (например, щелочная фосфатаза, мальтозосвязывающий белок, арабинозосвязывающий белок, пенициллиназа), либо далее во внешнюю мембрану (липопротеид внешней мембраны, X-рецептор). Начало синтеза экскретируемых белков приводит, по-видимому, к взаимодействию их гидрофобной N-концевой последовательности с внутренней цитоплазматической мембраной бактериальной клетки, так что они далее синтезируются на мембраносвязанных рибосомах. В течение элонгации (или в некоторых случаях после нее) может происходить отщепление N-концевой последовательности. По завершении синтеза, после терминации трансляции, готовый белок проваливается в периплазматическое пространство и далее, в зависимости от гидрофобности (гидрофильности) своей поверхности, либо остается в пери-плазматическом пространстве как водорастворимый белок, либо интегрируется во внешнюю мембрану. Здесь, как видно, имеется большая аналогия с ситуацией для секретируемых белков в эукариотических клетках. [c.280]

    Механизм, обеспечивающий проникновение углеводородов в клетку, еще окончательно не изучен. В клетках дрожжей липидная фракция клеточной стенки, надо думать, вследствие своего гидрофобного характера служит главной системой транспорта углеводородов из окружающей среды до цитоплазматической мембраны. Установлено, что парафины при контакте с клеткой быстро диффундируют через клеточную стенку по градиенту концентрации. [c.111]

    Детальное изучение мембр-ан цитоплазматической сети (эндоплазматического ретикулума) стало возможно с момента выделения их в виде микросомной фракции при дифференциальном центрифугировании. Первые исследования с применением этого метода были выполнены в 1948 г. laude, выделившим мембраны цитоплазматической сети в виде фракции мелких гранул . [c.49]

    I — липоидный слой с выступами и бугорками . 2 — лнпополисахаридный слой . 3 — каналы 4 иеплотио упакованные молекулы белка 5 — плотный гликопептидный слой 6 — цитоплазматическая мембрана [c.247]

    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Любое изменение температуры снижает активность микробов, которая лишь постепенно восстанавливается. Гибель микроорганизма при высо-кой температуре — результат тепловой инактивно-сти РНК и повреж дения цитоплазматической мембраны. [c.285]

    Поражающее действие фенола на кожные покровы человека уменьшается нри введенип в его молекулу липофнльных групп (метильных, высших алкильных или хлора). Нейтральные молекулы обладают большим поражающим действием, чем соответствующие ноны. Биологическая активность фенолов обусловлена их способностью разрушать структуру бактериальной клетки. Считают, что разрушительное действие фегюла на цитоплазматические мембраны и стенки клетки проявляется в образовании довольно крупных пор для обеспечения днффуз1нт цитохрома наружу [2]. Крезолы по своему поражающему действию сходны с фенолом, ио вызывают менее тяжкие поражения (см. табл. 5.1). Хлорфе-нолы в производстве полимеров не применяются. [c.82]

    Питание микроорганизмов осуществляется через поверхность их тела путем диффузии в результате разных концентраций веществ внутри и вне организма. Движение растворенных веществ лод действием осмотического давления происходит в сторону мень-щих концентраций, воды — в сторону больших. Так как поступающие в клетку вещества вовлекаются в биохимические процессы и усваиваются микроорганизмом, равновесия их внутри клетки и. вне ее практически не наступает. Однако проникновение вещества -В клетку не всегда объяснимо осмосом. Цитоплазматическая мембрана обладает избирательной способностью отличать нужные вещества от ненужных и извлекать их из растворов с малой концентрацией, не пропуская вредные для клетки вещества, содержащиеся в среде в значительных концентрациях (до определенных лределов). Так как поверхность клеток на единицу их массы лредставляет громадную величину, то процессы обмена и размножения микроорганизмов происходят с большими скоростями, и этим объясняются интенсивные биоповреждения некоторых материалов, на которых идут такие процессы. Давление в клетке создается поступившими в нее веществами, продуктами обмена и веществами клеточного синтеза. В связи с высоким осмотическим давлением внутри клетки создается постоянный приток в нее воды. Этим можно объяснить способность микроорганизмов развиваться на сравнительно сухих средах. Так, микрогрибы способны повреждать материалы, имеющие влажность 15...20 % и ниже. [c.15]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Так, в растительной клетке белки образуют макромолеку-лярный остов цитоплазматического матрикса, ядерных структур, основное вещество, или строму митохондрий и пластид. В соединении с липидами они участвуют в построении всех мембранных систем плазмалеммы, эндоплазматического ретикулума, ядер-ной оболочки, аппарата Гольджи, мембраны митохондрий и пластид. Различные белки обнаруживаются даже в скелетной перегородке, называемой пектоцеллюлозной оболочкой, которая окружает клетку. Кроме того, к этим структурным белкам добавляются ферментные белки, более или менее характерные для того или иного клеточного компартмента. [c.125]

    Стимулирующее действие декана на такие процессы может быть обусловлено как индукцией ферментов, ответственных за модификацию промежуточных продуктов трансформации бетулина, непосредственно углеводородом, так и модификацией цитоплазматической мембраны или синтезом метаболитов (биосурфактантов) в присутствии этого соединения, облегчающих транспорт липофильных соединений в клетку. В последнем случае индуктором синтеза ферментов, ответственных за образование продукта К, может служить не сам декан, а какой-либо специфический продукт трансформации бетулина. [c.62]

    Однако, было обнаружено, что большинство биокатализаторов (биомасса микроорганизмов, собранная с поверхности агари-зованпой среды) вообще не работает в этих условиях. Это согласуется с имеющимся в летературе представлением о том, что окислительно-восстановительные биотрансформации редко реализуются в органических растворителях из-за способности последних растворять цитоплазматические мембраны клеток, а также вызывать денатурацию самих ферментов. [c.64]

    Пептидаза, отщепляющая сигнальный пептид, не обнаруживается на цитоплазматической стороне мембраны фермент локализован на противоположной стороне мембраны (со стороны мембранного просвета в случае эндоплазматического ретикулума эукариотических клеток). Похоже, что сигнальная пептидаза вступает в действие на поздних стадиях элонгации, когда пептид прошивает мембрану и оказывается в контакте с ее противоположной (нецитоплазматической) поверхностью. Кажется вероятным, что отщепление сигнального пептида нужно для высовывания N-концевой части белковой молекулы в водную фазу и соответствующей реорганизации сворачивания в глобулярный наружный внецитоплазматический домен (в случае трансмембранных белков) или в глобулярную структуру в целом (в случае секреторных белков). [c.284]


Смотреть страницы где упоминается термин Мембраны цитоплазматические ЦПМ: [c.11]    [c.248]    [c.194]    [c.7]    [c.7]    [c.99]    [c.63]    [c.29]    [c.537]    [c.162]    [c.217]    [c.285]    [c.16]   
Микробиология Издание 4 (2003) -- [ c.18 , c.45 ]




ПОИСК







© 2025 chem21.info Реклама на сайте