Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергозависимые процессы в митохондриях

    Принимая во внимание отрицательный итог всех попыток найти высокоэнергетические промежуточные соединения, а также очевидную необходимость интактной мембраны, Митчелл в 1961 г. предложил химио-осмотическую теорию окислительного фосфорилирования [97, 98]. В этой теории также принимается в расчет наличие энергозависимых процессов, таких, как накопление митохондриями катионов. Принципиальные положения теории Митчелла проиллюстрированы на рис. 10-12. Предполагается, что во внутренней мембране митохондрии имеется протонный насос, приводимый в действие потоком электронов этот насос выкачивает протоны из матрикса через мембрану. Идея о выкачивании протонов путем переноса электронов сама по себе не нова еще ранее высказывалось предположение, что этот механизм лежит в основе накопления в желудке соляной кислоты. Как указано на рис. 10-12, окисленный переносчик В при восстановлении в форму ВН приобретает два протона. Эти протоны не обязательно должиы поступать от восстановленного переносчика АНг, и Митчелл предположил, что они захватываются из раствора на внутренней стороне мембраны, т. е. со стороны матрикса. Затем, когда ВНг вновь окисляется под действием переносчика С, протоны освобождаются, но уже с наружной стороны мембраны. Митчелл привел данные, свидетельствующие о наличии требуемой стехиометрии процесса на каждые два протона, прошедшие через мембрану, синтезируется одна молекула АТР. Отсюда следует, что в цепь переноса электронов должно быть встроено три разных протонных насоса, соответствующих трем участкам фосфорилирования. [c.419]


    Энергозависимые процессы в митохондриях [c.422]

    Синтез АТР в митохондриях сильно ингибируется олигомицином. Однако имеются и, такие процессы, которые, потребляя энергию из цепи переноса электронов, в то же время нечувствительны к олигомицину. К таким процессам относится ионный транспорт через митохондриальную мембрану и другой энергозависимый процесс — обращенный поток электронов от сукцината к ЫАО+ (разд. Д,7). В обоих случаях олигомицин не оказывает никакого действия, однако динитрофенол и другие разобщающие агенты блокируют оба процесса. Все эти факты станут понятными, если предположить, что в присутствии олигомицина синтезируется высокоэнергетическое промежуточное соединение а обращенный поток электронов и перекачка ионов могут идти за счет свободной энергии гидролиза этого соединения без образования АТР. Динитрофенол разобщает все реакции, вызывая гидролиз Х- , а олигомицин воздействует только на синтез АТР. Эти наблюдения объясняются также гипотезой Митчелла, согласно которой ионный транспорт предшествует синтезу АТР. [c.422]

    Токсическое действие. Основным механизмом действия Д., как и других фталатов, на митохондрии считают его способность изменять проницаемость внутренних мембран этих органелл, ингибируя активность цитохрома С-редуктазы и оказывая влияние на энергозависимые процессы в цитоплазме. [c.656]

    Основой периодичности всех жизненных функций у клеток и клеточных популяций могут быть процессы, ответственные за высокочастотные осцилляции у специфических типов клеток. Нестабильность в метаболических путях, ключевые ферменты которых подвержены аллостерическому регулированию различными продуктами и субстратами метаболизма, является причиной ритмических колебаний содержания самых разнообразных компонентов в цитоплазме клеток. Периодическое поступление пирувата в митохондрии, связанное с гликолитическими осцилляциями, обусловливает колебания продукции АТФ, что в свою очередь может изменять протекание энергозависимых процессов биосинтеза в клетке и скорость активного транспорта веществ через мембраны. [c.121]

    Дыхательный контроль. Возрастание функциональной активности клеток сопровождается усилением дыхания. В значительной степени это достигается благодаря механизму дыхательного контроля, или акцепторного контроля дыхания. Дыхательным контролем называют зависимость скорости потребления Ог митохондриями, от концентрации ADP, который служит акцептором фосфата при окислительном фосфорилировании. В условиях полного сопряжения транспорта электронов по ЭТЦ с синтезом АТР интенсивность дыхательного процесса в митохондриях зависит от концентрации ADP или, точнее, от отношения действующих масс АТР-системы [ATP]/[ADP] [Pj]. Причем неорганический фосфат обычно присутствует в достаточном количестве и не является ограничивающим фактором. В клетке, находящейся в состоянии покоя, это отношение достаточно велико, так как почти весь ADP фосфорилирован. При увеличении функциональной активности клеток АТР расходуется на энергозависимые процессы, в ре- [c.167]


    По другой гипотезе АТР фотосинтеза на свету обеспечивает энергией не только фиксацию СО2, но и другие энергозависимые процессы в клетке. Окислительное фосфорилирование в митохондриях на свету резко замедляется, а цикл Кребса ускоряется, так как его интермедиаты необходимы для функционирования хлоропластов. [c.174]

    Концентрация свободного кальция в секреторной клетке может увеличиваться в результате открывания потенциалзависимых Са-каналов в плазмалемме или высвобождения катиона из его внутриклеточных резервуаров, например из эндоплазматического ретикулума и митохондрий, под действием специфических нейромедиаторов. Так, выделение кислоты пристеночными клетками слизистой желудка стимулируется гастрином, карбамилхолином и гистамином. Это сопровождается увеличением концентрации свободного Са + в клетках, что регистрируют по изменению флуоресценции квина-2. Чтобы определить источник Са +, в среду вводят олигомицин (ингибитор митохондриальной АТФазы и, следовательно, энергозависимых процессов аккумуляции ионов митохондриями), а вместо агента, вызывающего секрецию, добавляют кальциевый ионофор. В этих условиях также происходит секреция кислоты. При этом первый ответ клеток на добавление гастрина или антибиотика А23187 не зависит от внешнего Са +, а последующий — определяется уровнем Са + снаружи клеток. [c.97]

    Лизосомы также ограничены однослойной мембраной. Матрикс их оптически неоднороден и содержит ряд уплотнений. В лизосомах локализован набор гидролитических ферментов, участвующих в разрушении продуктов клеточного метаболизма, причем при помощи специального протонного насоса поддерживается низкое значение pH (не более 4,5), способствующее эффективному гидролизу. Внутриклеточные структуры, подлежащие разрушению, поступают в лизосомы, где и подвергаются гидролизу. Процесс селекции и поступления в лизосомы только отработанного материала обусловлен его специфическим мечением. Так, нативные белки в лизосомы не поступают. По истечении же времени функционирования происходит их инактивация цитоплазматическими протеиназами или присоединение убиквитина, что является сигналом для транспорта в лизосомы модифицирбванного белка. Кроме молекул, лизосомы могут разрушать органеллы или целые клетки (митохондрии, эритроциты). Процесс транспорта веществ в лизосомы является энергозависимым и требует затраты энергии. В растительных клетках гидролитические ферменты обычно локализованы в вакуолях — прообразе лизосом. [c.13]

    Классическим разобщающим агентом является 2,4-динитрофенол (ДНФ), который в концентрации 10 М значительно тормозит синтез АТФ, в большинстве случаев не влияя на потребление кислорода. В митохондрии с сохран- ным сопряжением скорость окисления субстрата зависит от концентраций АДФ и Фн высокая скорость дыхания может быть достигнута только в том случае, если АДФ и Фн присутствуют в достаточном количестве. Это явление (дыхательный контроль) является, по-видимому, механизмом, при помощи которого в клетках регулируется скорость дыхания, так как процессы биосинтеза и другие энергозависимые реакции метаболизма с использованием АТФ обычно регенерируют АДФ и Фн. При наличии ДНФ митохондрия свободно дышит при полном отсутствии АДФ и Фн. Кроме того, ДНФ увеличивает способность препаратов митохондрий расщеплять АТФ на АДФ и Фн. По этими другим причинам (Слейтер [77]) действие ДНФ может быть представлено так  [c.375]

    АТР, образующийся в процессе окислительного фосфорили-рованИя в митохондриях, проникает в цитоплазму, транспортируясь сквозь внутреннюю мембрану митохондрий. В мембране имеется специфический переносчик — адениннуклеотид-транс-локаза он обеспечивает обмен молекулы одного адениннуклео-тида на молекулу другого, но в силу энергозависимости указанного процесса может поддерживаться дисбаланс данных нуклеотидов. Так, отнощение ATPrADP в цитоплазме часто существенно выще, чем в матриксе митохондрий [1890]. [c.79]

    В митохондриях все энергозависимые виды транспорта веществ поддерживаются энергией А -Н. В плазмалемме и тонопласте растений и грибов большинство процессов такого типа также происходит за счет А хН. Однако в плазмалемме животной клетки гораздо более типичны AixNa-зависимые транспортные системы, хотя в некоторых особых случаях движущей силой осмотической работы и служит А хН. Для бактерий описаны примеры всех перечисленных выше движущих сил, хотя А хН и АТФ используются наиболее часто. У морских и галофильных микроорганизмов вместо А хН служит с той же целью A xNa. У Е. соИ среди 16 систем транспорта аминокислот 8 переносчиков утилизируют АТФ, 5 переносчиков — A iH, одна— А хЫаидве системы — как A iH, так и A xNa (табл. 8). Та же бактерия накапливает глюкозу за счет энергии ФЕП, лактозу — за [c.145]

    В нервной ткани большая часть образующейся энергии окислительного метаболизма тратится на функцию, сопряженную с транспортом катионов против электрохимического градиента. Формирование нервного импульса обеспечивается Na" "—К -АТФазой, которая является пейс-мекером 40—50% клеточного дыхания в нейронах и периферических нервах [286, 289, 394, 469, 516, 607]. Стимулируемое высокими концентрациями калия дыхание срезов мозга (как и в других тканях) является отражением активации Na" —К+-АТФазы [108, 121, 204, 404, 453, 565, 607]. Энергозависимость этого процесса подтверждается подавлением его ингибиторами дыхательной цепи митохондрий [286,289]. Активация работы цепи калием сопровождается соответствуюхцими редокс-изменениями дыхательных переносчиков (рис. 16). При этом регистрируются двухфазные изменения (окисление= восстановление) как для пиридиннуклеотидов и флавинов, так и для цитохромов [49]. Эффект зависит от субстратов окисления и оптимально воспроизводится в присутствии глюкозы и пирува-та, что подтверждает его связь с аэробным гликолизом [49, 121, 122]. Стимуляция дыхания калием значительно сильнее вЫражена не на свежеизолированных срезах, а в более поздний временной период (например, через 60 мин) за счет появления нечувствительной к уабаину компоненты (см. рис. 16). [c.70]



Смотреть страницы где упоминается термин Энергозависимые процессы в митохондриях: [c.83]    [c.155]    [c.187]   
Смотреть главы в:

Биохимия ТОМ 2 -> Энергозависимые процессы в митохондриях




ПОИСК







© 2025 chem21.info Реклама на сайте