Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические методы определения поглощения звука

    Как указывалось в гл. 2, многие физические свойства очень чувствительны к присутствию примесей, и в стандартных учебниках по анализу рассмотрено много примеров применения неизбирательных методов [1]. Однако не все физические свойства можно привлечь для определения следов элементов (понятие следы относится к уровням концентраций менее 0,01%). Во-первых, точность измерения этих свойств не всегда достаточно высока (например, измерения температур замерзания и кипения, теплоты реакци , вязкости, поверхностного натяжения, упругости, скорости звука). Во-вто-рых, в настоящее время многие измерения еще очень сложны как теоретически, так и экспериментально (диэлектрическая релаксация, циклотронный резонанс, магнитоакустическое поглощение, внутреннее трение и свойств сверхпроводимости). Аналогично измерения оптических эффектов в твердых телах, включая люминесценцию, фотопроводимость и поглощение света, не всегда легко обеспечивают получение надежных данных о содержании примесей. В-третьих, другие свойства (например, восприимчивость или ширина линий спектра ферромагнитного резонанса) чувствительны только к определенным примесям в определенных основах. Не существует неизбирательного аналитического метода определения следов элементов, основанного на измерении магнитных свойств, поскольку структура пробы и присутствие компонентов в больших концентрациях по сравнению со следами играют доминирующую роль. В-четвертых, измерения термоэлектрических и некоторых механических свойств (вязкость, напряжение сдвига) можно использовать для подтверждения присутствия или отсутствия примесей, но их редко применяют как основной аналитический метод и поэтому они здесь не будут рассмотрены. Наконец, хотя многие свойства тела зависят от структуры, здесь не будут рассмотрены примеры обнаружения дефектов в кристаллических решетках (нанример, вакансий и дислокаций), поскольку эта тема слишком обширна. [c.376]


    Впервые скорость звука и в жидком нормальном водороде была измерена Питом и Джексоном (121] в 1935 г. Исследователи использовали интерферометрический метод при частоте 427 кгц. Измерения проведены в точке нормального кипения водорода (20,4°К) с погрешностью около 0,5%, что соответствует абсолютной погрешности (5—7) м сек. Галт [122] в 1948 г. измерил скорость и поглощение звука в жидком нормальном водороде при температуре 17 °К и частоте 44,4 Мгц импульсным методом. При указанной ошибке определения температуры полученное значение скорости звука должно ограничиваться погрешностью (20—30) м сек. Ван-Иттсрбик с сотрудниками [123] исследовалп зависимость и(Т) в нормальном жидком водороде иа линии насыщения в диапазоне 14—2ГК интерферометрическим. методом при частоте 523 кгц, однако полученные результаты, по признанию самих авторов [124], оказались недостаточно корректными. В 1954 г. Ван-Иттербик, Ван-дер-Берг и Лимбург [125] измерили скорость звука в нормальном водороде при частоте 1 Мгц и в параводороде при частоте 3 Мгц при температуре в нормальной точке кипения оптическим и интерферометрическим методами. Использование разных методов дало результаты, отличающиеся до 7 м/сек (в табл. 40 данные этой работы, полученные оптическим методом, от.мечены звездочкой). [c.97]

    Образование ассоциатов в растворах электролитов было доказано экспериментально с помощью различных методов криоскопических [23] и кондук-тометрических [17, 24], путем измерения скоростей реакций [25], определения коэффициента распределения между несмешивающимися жидкостями [261, электрохимических (потенциометрическое титрование [271), а также непосредственно с помощью измерения оптического поглощения (ультрафиолетовый [28] и [291 видимый свет), комбинацион гого рассеяния [30], поглощения звука [311 и ядерного магнитного резонанса [32]. Обзор этих методов дан в работе [331. [c.117]


Применение ультраакустических методов в практике физико-химических исследований (1952) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Метод поглощения

Методы оптические

Оптическое поглощение

Поглощение звука

Поглощения звука метод



© 2025 chem21.info Реклама на сайте