Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование процессов передачи энергии

    Воспринимающие свет пигменты обеспечивают сложный механизм концентрирования световой энергии (рис. 4.6, а). Световая энергия, воспринимаемая большим числом (около 200) молекул хлорофилла, передается на единый активный центр. При этом фотосинтетические системы I и II имеют световоспринимающие пигменты различного типа, благодаря чему осуществляется постепенная передача энергии на активный центр от пигментов, поглощающих световые кванты более высокой энергии (т. е. коротковолновые кванты). Поскольку расстояние между молекулами хлорофилла около 1,8 нм, для процесса передачи энергии синглетной формой хлорофилла за время жизни возбужденного состояния может осуществиться около 300 актов передачи энергии. При соотношении числа активных центров и числа воспринимающих пигментов 1/200 активные центры всегда получают достаточное количество энергии. Порядок расположения пигментов еще окончательно не выяснен. Обычно хлорофилл в биологических системах связан с белками, образуя с ними пигмент-белковые комплексы. При обработке пигментов поверхностно-активными веществами происходит сдвиг в длинах волн поглощаемого света. Этот факт сразу наводит на мысль об использовании полимерных матриц для моделирования и регулирования процессов описываемого типа. [c.119]


    Анализ системы, состоящей из уравнения (2.44) и кинетического уравнения реакции первого порядка, проведен в работах [96, 97]. Такой подход удобно использовать для моделирования процессов получения крупногабаритных блоков, так как часто из-за низкой теплопроводности режим их получения близок к адиабатическому (число БиоСО, ). Более полная постановка задачи моделирования процесса химического формования в форме дается анализом режимов работы периодического реактора без смешения при нестационарно протекающих химических процессах и кондуктивном теплопереносе. Один из вариантов расчета может быть выполнен при следующих допущениях [98] реакция, протекающая в рассматриваемой области, является одностадийной и необратимой теплопередача в зоне реакции осуществляется путем теплопроводности движение реагирующего вещества и связанный с ним конвективный механизм передачи тепла отсутствуют исходное вещество и продукты реакции находятся в одном фазовом состоянии, т. е. протекание реакции не сопровождается фазовыми превращениями лраиица рассматриваемой области непроницаема для вещества теплообмен на границе раздела происходит по закону Ньютона величины, характеризующие физические свойства вещества (теплопроводность, теплоемкость, плотность), химическую реакцию (энергия активации, предэкспоненциальный фактор, тепловой эффект) и условия протекания процесса (давление, температура окружающей среды, форма и размеры области, коэффициент теплоотдачи), в ходе процесса не изменяются. [c.54]

    Моделирование процессов передачи энергии в системе тетраэдрическая пятиатомная молекула—атом инертного газа [c.67]

    МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЕРЕДАЧИ ЭНЕРГИИ [c.104]

    Дальнейшее развитие теории связано с исследованиями возможных динамич. ограничений, налагаемых на перераспределение энергии и иа скорость самопроизвольного превращ. активной молекулы, более точным количеств, определением к ( , ) на основе эксперим. данных об эффективных сечениях передачи энергии при столкновениях или квантовомех. расчетов. Наряду с аналит, подходами к решению этих вопросов быстро развиваются методы численного моделирования на ЭВМ процессов внутримолекулярного движения, активации и дезактивации. Как правило, моделирование проводится в рамках классич, механики. [c.134]

    Более сложна ситуация с моделированием процессов типа 1, поскольку не существует аналогов световосприш1мающих пигментов и не удается создать систему с пигментами, уровни энергии которых соответствовали бы требуемой последовательности. Есть возможность увеличить сечение фотопоглощения одинаковых пигментов, используя миграцию 3Hq)rHH. Для этого прежде всего объединяют люминофоры в группы, например фиксируя их на полимерном носителе. Известно, что в полимерных структурах такого типа можно осуществлять миграцию энергии между фенильными, пoли-N-винилкapбaзoльными группами и т. п., если в качестве подложки использован полистирол. В настоящее время удается проводить реакции передачи энергии и электрона типа [c.134]



Смотреть главы в:

Вычислительные методы в химической кинетике -> Моделирование процессов передачи энергии




ПОИСК





Смотрите так же термины и статьи:

Процесс энергии

Процессы передачи энергии



© 2024 chem21.info Реклама на сайте