Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомно-флуоресцентная пламенная спектрометрия

    АТОМНО-ФЛУОРЕСЦЕНТНАЯ ПЛАМЕННАЯ СПЕКТРОМЕТРИЯ [c.96]

    Спектральные помехи. По причинам, которые будут объяснены ниже, спектральные помехи более характерны для пламенно-эмиссионной спектрометрии, чем для атомно-абсорбционной и атомно-флуоресцентной пламенной спектрометрии. С одной из спектральных помех сталкиваются при пламенно-эмиссионном определении бария в присутствии больших количеств кальция. Наиболее чувствительная эмисси- [c.686]


    Атомно-флуоресцеитная пламенная спектрометрия является самым новым пламенным спектрометрическим методом анализа. Хотя флуоресценцию атомов металлов впервые наблюдал Р. В. Вуд в 1890-х годах, но только в 1964 г. проф. Дж. Д. Вайнфорднер с сотр. использовал атомную флуоресценцию в качестве метода анализа. В результате многих исследований было показано, что атомно-флуоресцентная пламенная спектрометрия по чувствительности, воспроизводимости и удобству работы должна быть конкурентиоспособной с атомно-абсорбционным и пламенно-эмиссионным методами. В настоящее время атомно-флуо- [c.701]

Таблица 20-2. Пределы обнаружения элементов в атомно-флуоресцентной пламенной спектрометрии Таблица 20-2. <a href="/info/583498">Пределы обнаружения элементов</a> в атомно-флуоресцентной пламенной спектрометрии
    В гл. 18 было показано (см. с. 611), что испускание, поглощение и люминесценция значительно отличаются. Однако в пламенно-эмиссионной, атомно-абсорбционной и атомно-флуоресцентной пламенной спектрометрии состояние химической пробы является одним и тем же, а именно — свободные атомы в пламени. Для того чтобы успешно применять эти методы анализа, образование свободных атомов в пламени должно быть эффективным, воспроизводимым и предсказуемым. Образование свободных атомов в пламени является чрезвычайно сложным процессом, зависящим от ряда факторов, которые необходимо тщательно контролировать. [c.680]

    В атомно-флуоресцентной пламенной спектрометрии, как и в молекулярных флуоресцентных методах анализа, мощность флуоресценции прямо пропорциональна мощности излучения первичного источника при длине волны, поглощаемой атомами в пламени. Для проведения качественного анализа первичный источник должен испускать излучение в широком спектральном диапазоне, чтобы обеспечить возбуждение флуоресценции максимального числа элементов. К сожалению, хотя [c.701]

    Серьезной помехой в атомно-флуоресцентной пламенной спектрометрии может быть и рассеяние пламенем излучения первичного источника, рэлеевское рассеяние и рассеяние Ми (рассмотренные в гл. 18, с. 615) имеют место при всех длинах волн излучения источника и потому вызываемый ими сигнал практически неотличим от сигнала, вызванного резонансной атомной флуоресценцией. Для наилучшей компенсации рассеяния обычно используют следующий прием. В пламя распыляют холостой раствор, идентичный с пробой, ко не содержащий определяемого вещества. При этом допускают, что измеряемый сигнал излучения вызван исключительно посторонним рассеянием, поэтому для получения истинного сигнала флуоресцентного излучения сигнал от холостого раствора следует вычесть из сигнала от пробы. [c.702]


    Рж. 20-17. Калибровочные графики для определения кадмия, цинка, таллия и ртути с помощью атомно-флуоресцентной пламенной спектрометрии  [c.703]

    Преимущества атомно-флуоресцентной пламенной спектрометрии. [c.703]

    Одним из наиболее важных потенциально возможных применений атомно-флуоресцентной пламенной спектрометрии является использование ее в области многоэлементного анализа (одновременного определения нескольких элементов), для чего дополнительно требуется только полихроматор и соответствующая система детектирования. Последняя может состоять из фотографической пленки или пластинки, но можно применить также несколько отдельных фотодетекторов при соответст- [c.703]

    Атомно-флуоресцентная пламенная спектрометрия с использованием лазеров с перестраиваемой частотой. Было высказано предположение, что идеальным первичным источником для атомно-флуоресцентной пламенной спектрометрии должен быть лазер с перестраиваемой частотой. Высокая мощность, узкая ширина полосы частот и направленность излучения лазера говорят о том, что лазер должен быть совершенным источником возбуждения флуоресценции атомов металлов в пламени. Кроме того, возможность перестраивания частоты излучения лазера позволяет проводить последовательное возбуждение, чтобы регистрировать флуоресценцию нескольких элементов в пробе, т. е. позволяет значительно упростить многоэлементный анализ. С применением лазеров атомно-флуоресцентная пламенная спектрометрия могла бы стать совершенным методом элементного анализа. Но в настоящее время, к сожалению, недорогие практические лазеры с перестраиваемой частотой, пригодные для использования в атомно-флуоресцентной спектрометрии, еще не разработаны. Сейчас ведутся интенсивные исследования в этой области, и мы надеемся, что в недалеком будущем [c.704]

    Описано несколько вариантов определения хрома методом атомно-флуоресцентной пламенной спектрометрии [935]. Измерения проводят на установке, состоящей из модифицированного дифракционного спектрофотометра, распылителя и горелки от спектрофотометра 11п1са1п 8Р 900, безэлектродных ламп ВЧ. Наиболее интенсивными линиями хрома в спектре являются линии 357,87, 359,35, 360,53 нм. Наименьшую концентрацию хрома (0,005 мкг/мл) можно обнаружить в пламени воздух—С2Н2, разбавленном аргоном. Оптимальные расходы воздух — 7 л/мин, С2Н2 — 1,1 л мин, Аг — 10 л мин. В более восстановительном пламени сигнал несколько больше, но фон и помехи от сопутствующих элементов сильнее. Оптимальная высота флуоресцирующей зоны 15—35 мм над горелкой. Калибровочные графики для атомной флуоресценции хрома при 359 нм прямолинейны в интервале 0,01—50 мкг/мл. Исследовано влияние 38 элементов в окислительном пламени при концентрации канодого 0,5 мг/мл и концентрации хрома 2 мкг/мл. Обнаружено небольшое стимулирующее влияние только Се, 81 и Т1. Этот метод используют для определения Сг и Мп в сталях [936]. Железо мешает определению. Его удаляют экстракцией амилацетатом. Процедуру автоматической экстракции применяют при анализе смеси микроколичеств Со, Сг, Си, Ее, Мп, 2п [806]. [c.96]

    Аппаратура для атомно-флуоресцентной пламенной спектрометрии. Как следует из рис. 20-16, аппаратура, используемая в атомно-ф.луоресцентной пламенной спектрометрии, подобна той, какая используется в молекулярной флуоресцентной спектрометрии. Однако, поскольку атомы в пламени могут поглощать излучение только определенной характеристической длины волны, обычно нет необходимости применять монохроматор для возбуждения. Для возбуждения атомной флуоресценции источник излучения фокусируют непосредственно на пламя. Флуоресцентное излучение затем диспергируют с помощью селектора частоты и обнаруживают соответствующим фотодетектором. И, наконец, регистрируют результирующий сигнал на соответствующем устройстве. [c.701]

    Как уже отмечалось, атомно-флуоресцентная пламенная спектрометрия является чрезвычайно чувствительным аналитическим методом. Некоторые пределы обнаружения элементов, приведенные в табл. 20-2, показывают, что этот метод для количественного определения многих элементов более чувствителен, чем атомно-абсорбционная и пламенно-эмиссионная спектрометрия (см. рис. 20-15, с. 700). Такая высокая ч в-ствительность является результатом совмещения в этом методе преимуществ, присущих атомно-абсорбционной и пламенно-эмиссионной спектрометрии. Атомная флуоресценция, подобно атомной эмиссии, обнаруживается путем измерения искомого излучения относительно низкого фонового излучения. Однако подобно атомной абсорбции, атомная флоуресценция основывается не только на энергии пламени для возбуждения атомов, а использует более мощный дополнительный источник возбуждения. [c.703]

    Вспомнив материал по молекулярной флуоресцетщи, изложенной в гл. 19, объясните сильную кривизну калибровочных графиков, построенных по данным определений методом атомно-флуоресцентной пламенной спектрометрии при высоких концентрациях определяемого вещества. [c.717]

    Предскажите, каким образом химические или физические помехи будут влиять на атомно-флуоресцентную пламенную спектрометрию в отличие от пламенноэмиссионной и атомно-абсорбционной спектрометрия. [c.718]


Смотреть страницы где упоминается термин Атомно-флуоресцентная пламенная спектрометрия: [c.701]    [c.702]    [c.703]    [c.214]    [c.214]    [c.214]    [c.228]    [c.231]   
Смотреть главы в:

Аналитическая химия хрома -> Атомно-флуоресцентная пламенная спектрометрия

Химическое разделение и измерение теория и практика аналитической химии -> Атомно-флуоресцентная пламенная спектрометрия




ПОИСК





Смотрите так же термины и статьи:

Атомно-флуоресцентная спектрометри

флуоресцентное



© 2025 chem21.info Реклама на сайте