Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение эмиссионным пламенно-фотометрическим

    Анализатор жидкости пламенно-фотометрический ПАЖ-1. Анализатор ПАЖ-1 предназначен для определения в растворах микроколичеств натрия, калия, лития и кальция методом пламенной эмиссионной спектроскопии. [c.193]

    Пламенно-фотометрические способы определения щелочных элементов хорошо разработаны и дают высокую чувствительность определений. Атомно-абсорбционный метод анализа для лития, натрия и калия уступает по чувствительности эмиссионному методу. Однако его широкое использование для определения щелочных металлов вполне оправдано, поскольку эмиссионный пламенно-фотометрический анализ осложнен различными оптическими и физически.ми помехами. Такого рода помех в атомно-абсорбционном методе значительно меньше. [c.105]


    Пламя как источник света для эмиссионного спектрального анализа, еще десять лет назад использовавшееся для определения лишь щелочных металлов, в настоящее время превратилось в один из наиболее эффективных источников при анализе растворов. Одним из существенных преимуществ метода фотометрии пламени является использование эталонных растворов, приготовление которых значительно проще, чем эталонов металлов, сплавов и порошков. Пламя дает также значительные преимущества по сравнению с электрическими источниками в воспроизводимости результатов определений, позволяя снизить случайную ошибку измерения абсолютной интенсивности спектральных линий до десятых долей процента при оптимальном выборе параметров, определяющих режим работы горелки и распылителя. Это позволяет вести количественный анализ по измерению абсолютной интенсивности линий методом пламенной фотометрии точнее, чем при использовании электрических источников света, даже если в последнем случае анализ ведут по относительной интенсивности линий с использованием внутреннего стандарта. Отрицательным свойством пламени, однако, является малая чувствительность определения трудновозбудимых элементов, связанная с относительной низкой температурой (3000—3500° С). Несмотря на это, возможно определение фосфора пламенно-фотометрическим методом с чувствительностью 5—10 мкг мл [206, 207, 337, 567, 643, 992, 1027, 1059, 1097, 1110]. [c.78]

    В состав органических веществ могут входить почти все элементы периодической системы. Однако в настоящей книге будут описаны методы определения лишь нескольких элементов, наиболее часто встречающихся в составе органических веществ. Детектирование всех других элементов представляет собой задачу, с которой сталкиваются, например, в курсе инструментального анализа, включающего атомно-адсорбционный, эмиссионный, пламенно-фотометрический и другие инструментальные аналитические методы. [c.101]

    В отсутствие других мешающих ионов солп лантана сильно подавляют абсорбцию кальция, но их действие значительно ослабляется в присутствии большого количества посторонних ионов [1248], поэтому лантан часто используется в качестве освобождающего буфера при определении кальция [492, 731, 1256]. Фосфат-иоп при атомно-абсорбционном определении кальция ведет себя так же, как и в эмиссионных пламенно-фотометрических методах [69, 1071, 1248, 1374]. [c.149]


    Для определения кадмия используют эмиссионную спектрографию, пламенную фотометрию (эмиссионную, атомно-абсорбционную и атомно-флуоресцентную). Чувствительность прямого спектрографического определения — га-10 — га-10 г СА — может быть повышена его предварительным концентрированием. Чувствительность эмиссионного пламенно-фотометрического определения соответствует /г-10 мкг СА ъ мл раствора, атомноабсорбционного — га-10" мкг, а атомно-флуоресцентного — п.-10 мкг С(1 и менее. [c.127]

    Принцип анализа. Определение проводят эмиссионным пламенно-фотометрическим методом. В пламя смеси газ — воздух вводят растворы проб и стандартных растворов калия. [c.53]

    В эмиссионных пламенно-фотометрических методах все эти влияющие факторы делятся на три основные группы оптические, физические и химические помехи. В число оптических помех входят прямые спектральные помехи, обусловленные неполным разрешением аналитической и мешающей линии или полосы, и косвенные, обусловленные непрерывным фоном, возникающим от близко расположенной линии другого элемента. Этот тип помех большей частью свойственен фильтровым пламенным фотометрам [144], но имеет место и при использовании монохроматоров [14]. Примером этого типа помех является влияние калия и кальция при определении натрия, а также кальция и магния при определении натрия. [c.73]

    Широкое распространение получил эмиссионный пламенно-фотометрический анализ (для определения щелочных и щелочно-земельных металлов). [c.337]

    Правильность результатов зависит и от физических свойств растворов, определяющих скорость их распыления, а следовательно, и концентрацию в пламени определенного элемента . В эмиссионном пламенно-фотометрическом анализе их влияние обычно устраняется применением стандартных растворов, имитирующих состав анализируемого образца. В атомно-абсорбционном анализе используется тот же прием, однако более радикальным средством, обеспечивающим получение правильных результатов при анализе образцов произвольного состава, является применение метода добавок [11]. [c.75]

    Эмиссионный пламенно-фотометрический анализ широко применяют при агрохимических и почвенных исследованиях, в химической промышленности, биологии, медицине. В агрохимической службе метод используют главным образом для определения содержания щелочных (калия, натрия), а также щелочно-земельных металлов (магния, кальция, стронция, бария), реже некоторых других (марганца, меди). [c.372]

    В рассматриваемой работе показано, что атомно-абсорбционному определению кальция практически не мешают натрий, калий и магний. Что касается фосфатов, то их влияние столь же значительно, что и в эмиссионном пламенно-фотометрическом анализе, и сильно зависит от типа и состава пламени, а также от высоты участка пламени, поглощение которого измеряется. В своих исследованиях автор применял воздушно-ацетиленовое пламя, так как обнаружил, что влияние фосфатов при его использовании значительно слабее, чем Б пламени воздух—светильный газ. Наиболее оптимальные условия для пламени найдены следующие свет от полого катода фокусируется в участке пламени, расположенном на [c.139]

    Первые работы, результаты которых показали практическую пригодность атомно-флуоресцентного анализа, опубли кованы в 1964 году [54, 55]. Авторы этих работ рассмотрели теоретические основы метода, провели сравнение с атомноабсорбционным и эмиссионным пламенно-фотометрическими методами анализа и применили метод к определению цинка, кадмия и ртути в водных растворах. Используя в качестве источника света газоразрядные дуговые лампы, прямоточную горелку Бекмана и кислородно-ацетиленовое пламя, они получили чувствительность атомно-флуоресцентного обнаружения, равную 0,04 мкг/мл для цинка (линия 2п 214 ммк), 0,05 мкг/мл для кадмия (линия С(1 229 ммк) н 1 мкг/мл для ртути (линия 254 ммк). Достигнутые пределы атомно-флуо-238 [c.238]

    Применение первого способа в эмиссионном пламенно-фотометрическом анализе, как известно, сильно осложнено ае-обходимостью использования соли того же состава, спектрально чистой по натрию в атомно-абсорбционном анализе это осложнение, по-видимому, отпадает, так как возможно (как это следует из данных табл. 12) проведение анализа разных по составу солей с применением стандартов, приготовленных на основе одной соли, натрий в которой отсутствует или предварительно определен методом добавок. [c.113]

    Медь является одним из элементов, поведение которого в условиях атомно-абсорбционной спектроскопии хорошо изучено. Разработано много методик для ее определения, включающих способы химического извлечения (экстракцию). Сравнительно с эмиссионным пламенно-фотометрическим атомно-абсорбционный метод имеет значительное преимущество при определении серебра, золота и меди. [c.116]

    Применяемые химические методы определения магния в чугунах, также как и эмиссионные пламенно-фотометрические методы требуют предварительного отделения железа и других мешающих элементов. Так, при проведении пламенно-фо-тометрического анализа основную массу железа отделяют экстракцией в органический растворитель, но мешающее действие фосфора и марганца остается и по этой причине применяют стандартные растворы, содержащие приблизительно те же количества этих элементов, что и анализируемые образцы [229]. Ранее было показано, что вследствие слабой эмиссии магния в пламени и сильного самопоглощения его аналитических линий более выгодным оказывается определение магния по атомным спектрам поглощения [14]. [c.133]


    Изучение влияний. Известно, что определению кальция эмиссионным пламенно-фотометрическим методом мещают  [c.139]

    В таблице приводятся некоторые данные по чувствительности определения олова и свинца атомно-абсорбционным и эмиссионным пламенно-фотометрическим методами. [c.161]

    Сурьма, теллур, селен и висмут имеют высокую чувствительность атомно-абсорбционного определения, в то время как эмиссионным пламенно-фотометрическим методом сурьма совсем не определяется, а висмут и теллур имеют низкую чувствительность определения. Работ по определению мышьяка и серы не проводилось. [c.166]

    Пламенно-фотометрический Д. х. измеряет интенсивность излучения в-в в водородном шимени. Его можно рассматривать как вариант пламенно-эмиссионного фотометра. При сгорании в-в образующиеся атомы и простые молекулярные частицы возбуждаются, переходят в состояние с более высокой энергией и испускают определенное характеристич. излучение. Оптич. фильтры, используемые в детекторе, позволяют выделить линию, характерную для соед. определенного класса (напр., для серосодержащих 394 нм, для фосфорсодержащих 526 нм). Излучение, соответствующее этой линии, усиливается фотоумножителем. [c.26]

    Эмиссионный пламенно-фотометрический метод весьма широко применяют в самых различных областях науки и техники при определении лития в минералах, горных породах, водах, солях, технологических объектах, биологических материалах и др. [c.116]

    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ СТРОНЦИЯ В АПАТИТОВОМ КОНЦЕНТРАТЕ ЭМИССИОННЫМ ПЛАМЕННО-ФОТОМЕТРИЧЕСКИМ МЕТОДОМ [c.34]

    Настоящий стандарт распространяется на питьевую воду и устанавливает эмиссионный пламенно-фотометрический метод определения массовой концентрации стронция. [c.224]

    Спектрофотометрические детекторы относятся к числу важных селективных детекторов. Пламенно-фотометрический детектор фиксирует свет определенной выбранной частоты, испускаемый пламенем. Пламенный фотометр, определенным образом отрегулированный и подключенный к выходу колонки, может служить детектором 6, 42] главным образом при анализе соединений, содержащих фосфор, галогены, серу (например, биоциды), и для селективного детектирования хелатов металлов (Мо, Ш,, Т1, Аз, 2г, КЬ, Сг) и т. д. Чувствительность определения фосфорсодержащих соединений может достигать 10 г/с. У эмиссионного детектора, в котором вместо пламени используется электрический разряд (обычно безэлектродный) [59], аналогичные селективность и чувствительность. Так, чувствительность определения фосфор-, серу-, бром- или хлорсодержащих соединений составляет 10 "—10 г/с, а чувствительность определения иодсодержащих соединений достигает 10 г/с [59], Спектрофотометрические детекторы в больщинстве случаев стоят дороже, чем обычные селективные детекторы, например электронно-захватный детектор или даже пламенноионизационный со щелочным металлом, но при соответствующем выборе частоты излучения селективность обнаружения спектрофотометрическими детекторами может быть очень высокой. Иногда даже можно регистрировать сигналы при двух различных частотах и таким образом получать селективный отклик на два различных гетероатома в молекуле. Примером тому могут служить соединения, содержащие фосфор и серу. При использовании двух различных светофильтров и двух оптических путей возможна регистрация сигналов при длинах волн 526 и 394 нм. Сигнал фосфора при 526 нм в 800 раз интенсивнее. [c.210]

    При определении натрия в силикатных породах (гнейсах, гранитах, сиенитах) с содержанием не менее 10 % используют метод Аренса для концентрирования щелочных и щелочноземельных элементов с последующим определением натрия атомно-эмиссионным методом по линии 588,9 нм в воздушно-ацетиленовом пламени [424]. Пламенно-фотометрическая установка сконструирована на основе двойного стеклянного монохроматора ДМ. Фотоэлектрическое устройство состоит из фотоумножителя ФЭУ-17, выпрямителя ВВС-1 и зеркального гальванометра М-21. [c.156]

    В книге изложены основные теоретические положения наиболее распространенных методов спектрального анализа вещества (эмиссионного спектрографического, пламенно-фотометрического и атомно-абсорбционного). В учебном пособии дано описание лабораторных работ, необходимой аппаратуры и приведены примеры использования методов количественного спектрального эмиссионного и атомно-абсорбционного определения ряда элементов в различных объектах. [c.2]

    Благодаря этому эмиссионный спектральный метод нашел более широкое распространение при определении РЗЭ в различных объектах, в том числе и в чистых препаратах индивидуальных РЗЭ. При этом достигнут довольно низкий предел обнаружения, который составляет 0,03—0,005% в зависимости от свойств элемента. Снижение предела обнаружения до 10 —10 % стало возможным при использовании химико-спектрального метода анализа, при котором применяются различные способы концентрирования. Обзор работ по определению РЗЭ в ряде объектов различными методами, в том числе спектральным эмиссионным и пламенно-фотометрическим, приведен в монографиях Д. И. Рябчикова и В. А. Рябухина Аналитическая химия редкоземельных элементов и иттрия (М., Наука , 1966), Н. С. Полуэктова, Л. И. Кононенко Спектрофотометрические методы определения индивидуальных редкоземельных элементов (Киев, Наукова думка , 1968), А. Н. Зайделя, Н. И. Калитеевского, Л. В. Липиса и М. П. Чайка Эмиссионный спектральный анализ атомных материалов (М.—Л., Физматгиз, 1960), а также в оригинальных работах, выполненных в последние годы. [c.4]

    Основными методами количественного определения скандия являются. спектральный, комплексонометриче-скнй, фотометрический. Эмиссионный пламенно-фотометрический и атомно-абсорбционный методы обладают в отношении скандия низким пределом обнаружения. Ввиду разнообразия скандийсодержащих объектов и недостаточной избирательности органических реагентов, предложенных для определения скандия, применению фотометрических методов предшествует отделение скандия от сопутствующих элементов. Практически часто при анализе технических и природных материалов применяется довольно специфичное осаждение скандия тартратом аммо- [c.206]

    Сульфаты определяли фототур бидиметрически в виде суспензии Ва504 в водноорганическом растворе [5, 6], и КЬ — эмиссионным пламенно-фотометрическим методом [7]. Для спектрофотометрического определения Си и Ре из одной пробы использовали селективные реагенты 2,2 -бицинхони-новую кислоту [8] и 2-нитрозо-1-нафтол-4-сульфокислоту [9]. Измерения оптической плотности растворов выполняли в микрокюветах с малым отношением объема к толщине поглощающего слоя [10]. При изучении распределения макрокомпонента использовали метод аргентометрического титрования по Фаянсу [II]. [c.85]

    Приведем несколько типичных примеров. При экстракционном отделении трехвалентного железа от вещества-основы в виде ацетилацетоната с последующим распы-ление.м экстракта в пламя чувствительность определения возросла по сравнению с определением в водных растворах в 6 раз . Боде и Фабиан испытали 40 органические растворителей различных классов для экстракции диэти т-днтиокарбамнната, купфероната, 8-оксихннолината н са-лицилальдоксимата меди при эмиссионном пламенно-фотометрическом определении. Наибольшее увеличение чувствительности определения (в 40 раз) по сравнению с определением в водных растворах было получено для ароматических углеводородов, несколько меньшее (в 21 — 24 раза) — для кетонов и алифатических сложных эфиров. При определении кальция в солях натрия и калия экстрагировали 8-оксихинолинат кальция н-бутанолом при pH 10,5 и полученный экстракт распыляли в пламя . Чувствительность определения составила 7-10 %. [c.172]

    Эмиссионный пламенно-фотометрический детектор (ПФД). ПФД относится к разряду селективных, причем его селективность можно изменять в довольно широких пределах, изменяя длину волны и ширину пропускания. ПФД нашел применение, в первую очередь, для детектирования фосфор- и серусодержащих соединений, причем он является фактически единственным детектором, с помощью которого удовлетворительно определяют микроколичества серусодержащих соединений [94, 103, ПО, 176]. Детектор позволяет при длине волны излучения 394 нм определять такие реакционноспособные вещества, как сероводород, двуокись серы, диметилсуль-фид при концентрации Ы0 % [81], диэтилсульфид, диэтилсульфон, диэтилсульфит, этаносульфонат [176]. Чувствительность определения сульфидов, тиофена, а-метилтиофена при объеме пробы 5 мл составила 5х Х10 % (масс.), т. е. ПФД оказался чувствительнее ПИД к этим соединениям на 6 порядков [177]. [c.87]

    Простой однолучевой спектрофотометр, построенный на базе спектрофотометра СФ-4, подробно описан в [172, 200]. Разборная трубка с полым катодом питается переменным током (50 гц, 600 в) через сопротивление 2—10 ком рабочий газ—аргон при давлении 1 мм рт. ст. (непрерывно подается и откачивается). Горелка удлиненная, пламя воздушно-пропановое или воздушно-ацетиленовое. Токи, снимаемые с фотоумножителя, измеряются ламповым вольтметром ЛВ-9 чувствительность определения (в мкг1мл) магния — 0,05 меди—0,1 серебра, цинка и кадмия — 0,2 золота, свинца, железа и никеля—1,0 палладия — 2,0 индия (3039 А)—5 висмута (3068А) —100.. 4вторами отмечается, что по сран нению с эмиссионным пламенно-фотометрическим методом, чувствительность выше для железа, никеля, меди, серебра, свинца и магния. Прибор был использован для определения примеси магния в препаратах РЗЭ. с чувствительностью [c.35]

    Другим способом устранения влияния со стороны физических свойств раствора является метод добавок, применению которого в эмиссионном пламенно-фотометрическом анализе сильно мешает излучение молекулярных полос, линии других элементов, фон пламени. В атомно-абсорбционном анализе метод добавок практически ничем не ограничен и, как это показано в ряде работ, обеспечивает получение правильных результатов. Способ добавок был применен для определения натрия в Mg(NOз)2, Ь1С1, КВг и 5г(ЫОз)2. Готовили две серии 1%-ных растворов указанных солей в растворы первой серии вводили по 5 мкг/мл натрия растворы второй серии оставляли для получения нулевого отсчета. Растворы обеих серий распыляли в пламя и фотометрировали расчет искомой концентрации проводили по формуле [c.113]

    Результаты анализа представлены в табл. 13. Чтобы подчеркнуть значительность затруднений, возникающих при разработке эмиссионных пламенно-фотометрических методов определения натрия с применением фильтрофотометра, в табл. 13 приведены и результаты эмиссионного анализа, проведенного также по способу добавок и при тех же условиях, что и зтомно-абсорбционный анализ. Рассмотрение данных табл. 13 [c.113]

    Поскольку эмиссионному пламенно-фотометрическому определению натрия мешают сильные полосы кальция, последний обычно отделяют осаждением в виде фосфата кальция. Осадок имеет желатинообразную структуру и действует как соосадитель, что и является, вероятно, причиной заниженных результатов, получаемых эмиссионным методом [224]. Атомноабсорбционный анализ свободен от влияния со стороны оптических факторов и в связи с этим была изучена возможность применения этого метода к определению натрия в образцах галофосфатных фосфоров без предварительного отделения кальция и фосфат-иона. [c.115]

    Изучалось влияние кальция (вводился СаСЬ) и фосфат-иона (вводились соли Н3РО4) при этом определение добавленных количеств натрия проводилось как атомно-абсорбционным, так и эмиссионным пламенно-фотометрическим методом. Сравнение полученных результатов показало, что атомно-абсорбционный метод подвергался различным влияниям в значительно меньшей мере, чем эмиссионный метод например, при содержании в растворе 1 % кальция было добавлено 0 20 и 50 мкг мл натрия найдено эмиссионным методом 8 28 и 60 мкг мл, а атомно-абсорбционным методом — 0,5 18 и [c.116]

    Рассматривая вопросы, связанные с применением фильтров, автор отмечает, что в случае эмиссионного пламенно-фотометрического метода является необходимым учет посторонних излучений, пропускаемых фильтром. При анализе обычных образцов, состав которых известен заранее, такой учет розможен, но при наличии в растворе неконтролируемых количеств кальция и редких элементов (рубидия, цезия, лития) их излучение остается неучтенным и, следовательно, при определении натрия или калия будет внесена ошибка [144]. [c.138]

    Ход определения. Обрабатывают 0,3—0,5 г высушенной растительной массы кислотами так же, как и при определении кальция эмиссионным пламенно-фотометрическим методом [93, 105]. Затем берут 20 мл полученного раствора и добавляют 5 мл раствора, содержащего 3% Mg, 0,1% Na и 0,75% К (в виде хлоридов) и 2% (по объему) H2SO4. Готовят стандарты, содержащие Mg, N a, К и H2SO4 в том же количестве и Са в интервале от О до 70 мкг/мл. Анализируемый [c.142]

    Определение содержания стронция в апатитовом концентрате эмиссионным пламенно-фотометрическим методом. Эпштейн Т. Б., Бессонов В. А. Инструментальные методы анализа и исследования в производствах серной кис.чоты, минеральных удобрений и кормовых фосфатов. Труды НИУИФа, вып. 240. М., НИУИФ, 1982, стр. 34—38. [c.189]

    Содержание натрия в катализаторе определяют пламенно-фотометрическим мeтoдoм . Этот метод является одной из разновидностей эмиссионного спектрального анализа и имеет существенные преимущества по сравнению с другими методами. Так, относительная ощибка метода, вследствие высокой стабильности источника излучения, составляет 1—5%, а в некоторых случаях и менее 1% при содержании окиси натрия более 0,01%. Относительная ошибка определения увеличивается с дальнейшим уменьшением содержания окиси натрия и достигает 10—20 отн.%. Количество необходимого для анализа раствора измеряют несколькими миллилитрами. Чувствительность метода высока и, например, для щелочных элементов она находится в пределах Ю-" —10 г. Время, затрачиваемое на проведение анализа подготовленного раствора, измеряется минутами. [c.108]

    Предлагается определять натрий в пламени кислород—воздух — ацетилен при импульсном испарении его соли с графитового микрозонда [413]. Время импульса -<1 с, чувствительность -<10 ° г. Используется пламенно-фотометрическая установка на основе монохроматора ДФС-12. Предлагается [728] эмиссионный метод определения натрия в диффузионном пламени азот—водород при использовании графитовой нити. Применяют адаптор пламени — медную трубку. Изучение ее полости проецируется на цель монохроматора 8Р-900П. [c.117]

    При определении натрия в оксиде никеля в стандартные растворы вводят хлорид никеля (2 мг/мл), используют фильтровый фотометр фирмы К. Цейсс (модель III) и пламя ацетилен—воздух [1108]. Анализ титановых белид и оксида титана проводят после отделения титана отгонкой тетрафторида титана [516] или сорбцией сульфоса-лицилатного комплекса титана анионообменником [1111]. Оксиды цинка, железа, магния, никеля переводят в раствор с помощью НС] [62]. Натрий определяют атомно-эмиссионным методом в пламени ацетилен—воздух с помощью пламенно-фотометрической установки монохроматора УМ-2 с фотоумножителем ФЭУ-38. Основные параметры установки напряжение на ФЭУ 1200 В, расход ацетилена 2 л/мип, воздуха 8 л/мин. Эталонные растворы готовят в интервале концентраций натрия 5-10 —1 10 %. Изучено влияние НС1, К, Са, Fe и Мп на интенсивность резонансных линий натрия. Погрешность определения — г = 0,03 0,05 [79]. [c.170]

    Методы определения. В воздухе фотометрический метод, основанный на реакции с нитроантранилазо чувствительность 0,3 мкг в анализируемом объеме [39]. В сточных и природных водах, воздухе, снеге, почве, растительных материалах пламенно-эмиссионная спектрометрия чувствительность для воздуха 1 мкг/м , для водных сред — 0,01 мг/мл (Сопач и др. [27 24 35]). В сыворотке крови спектрофлуорометрическое определение Л. (Kim, Gary). В биологическом материале посредством атомной абсорбционной спектрометрии [57]. [c.30]

    При определении микроэлементов большое распространение получили эмиссионный спектральный анализ, фотометрические, флуориметрические методы, в частности, с использованием основных красителей, частично полярографические, пламенно-фотометрические, атомно-абсорбционные и кинетические методы. В табл. 1 показана частота использования различных методов при определении 34 главных микроэлементов. Особенностью советской геологической службы является широкое применение флуориметрнческих методов и относительно слабое использование атомной абсорбции. [c.109]

    Создание и исследование новых синтетических материалов требует все более разносторонних, надежных и быстрых методов анализа. Появление и внедрение в практику как новых, неизвестных ранее приемов и методов анализа (комплексономет-рия, дифференциальная спектрофотометрия, адсорбционная фотометрия, фотометрическое титрование и др.), так и незаслуженно забытых (эмиссионная пламенная фотометрия) позволило более совершенно и быстро проводить определение элементов, но не избавило от необходимости творческого подхода к решению конкретных аналитических задач. [c.295]

    Сочетание экстракции с физическими методами анализа дает возможность определять микроколичества элементов непосредственно в органической фазе, при этом наличие летучего органического растворителя повышает чувствительность определения в эмиссионном и пламенно-фотометрическом анализах, особенно если в качестве экстрагентов применяются хлорсодержаш,ие органические соединения, образующие в плазме легколетучие и хорошо ионизирующиеся галогениды. 1  [c.6]

    В заключение можно отметить, что возможности экст-ракцпонно-пламенпо-фотометрического (эмиссионного, и особенно атомно-абсорбционного) анализа как по числу определяемых элементов, так и по достигаемой чувствительности далеко не исчерпаны. Метод находит пока ограниченное применение в аналитической практике. Сочетание существующих пламенно-фотометрических методов с экстракцией и разработка новых экстракцпопно-пламепно-фотометрических методов значительно увеличит чувствительность определения многих элементов. [c.184]

    Березкиной и Элефтеровой [200] для определения следов двуокиси серы был предложен метод изотермического концентрирования, который целесообразно применять и при анализе примесей некоторых других соединений. Микроколичества сернистых соединений можно определять с помощью аргонового ионизационного или электронозахватного детекторов, а также анализировать сернистые соединения на чувствительном и селективном пламенно-фотометрическом детекторе или с помощью кулонометрической ячейки. Пламенный фотометр особенно удобен при анализе следов серусодержащих газов в сложных смесях, например в воздушных загрязнениях, так как высокая селективность этого детектора может быть использована для идентификации. Для определения ЗОг в смеси с постоянными газами применен эмиссион- [c.97]


Смотреть страницы где упоминается термин Определение эмиссионным пламенно-фотометрическим: [c.160]   
Аналитическая химия лития (1975) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

гом эмиссионный



© 2025 chem21.info Реклама на сайте