Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомная флуоресценция

    Атомно-флуоресцентный анализ — метод элементного анализа по спектрам атомной флуоресценции. Анализируемый образец атомизируют, образовавшийся атомный пар для возбуждения флуоресценции облучают квантами лучистой энергии, поглощаемыми атома- [c.513]

    Атомно-флуоресцентный анализ близок к атомноабсорбционному анализу. С помощью этого метода решают не только задачи, выполняемые атомно-абсорбционным анализом, он позволяет определить отдельные атомы в газовой среде. Например, возбуждая атомную флуоресценцию лазерным лучом, можно определять натрий в верхних слоях атмосферы на расстоянии 100 км от Земли. [c.648]


    Метод атомной флуоресценции позволяет определять до 65 элементов. Пределы обнаружения достигают в растворах — 1 от/мл в твердых порошкообразных образцах — 10 -10 %. Линейчатый характер спектров атомной флуоресценции обеспечивает атомно-флуоресцентному анализу высокую селективность. [c.514]

    Спектры атомной флуоресценции содержат гораздо меньше линий, чем спектры испускания тех же атомов в газоразрядных источниках возбуждения (лампы с полым катодом, высокочастотные безэлектродные лампы). Как правило, число линий в спектрах атомной флуоресценции не превышает десятка. [c.501]

    Для работы в режиме атомной флуоресценции выпускаются двухразрядные высокоинтенсивные спектральные лампы. [c.887]

    НИИ, сонолюминесценцию — при возбуждении ультразвуком. Свечение, возникающее при действии потока ионов щелочных металлов в вакууме,— ионолюминесценция свечение атомов при их оптическом возбуждении Б пламенах — атомная флуоресценция свечение, возникающее за счет энергии происходящей химической реакции и не требующее внешнего источника возбуждения,— хемилюминесценция. [c.89]

    Резонансная люминесценция характерна для атомов и некоторых простых молекул при их возбуждении в газовой фазе. Возвращение атомов из возбужденного в нормальное состояние сопровождается излучением кванта люминесценции, равного поглощенному кванту. Обычно у возбужденных атомов происходят те или иные энергетические потери. В результате излучаемые кванты меньше поглощаемых и люминесценция имеет большую длину волны. В настоящее время люминесценцией атомов металлов занимается атомная флуоресценция, которая превратилась в самостоятельный раздел люминесцентного анализа. [c.89]

    Если атом, находящийся в парообразном состоянии, излучает после поглощения резонансного излучения, то возникает атомная флуоресценция. На использовании этого явления основан метод атомно-флуоресцентной спектрофотометрии. [c.381]

    Атомы, возбужденные при поглощении излучения, вновь испускают эмиссионные линии не только той же длины волны, что и поглощенное излучение, но и других длин волн. Такая излучательная дезактивация носит название атомной флуоресценции. Когда наблюдают ту же длину волны, процесс называют резонансной флуоресценцией. Процесс флуоресценции фактически представляет собой комбинацию процессов поглощения и испускания. Флуоресцентные спектры обычно очень просты и накладываются на более сложные эмиссионные спектры, при этом флуоресцентные линии более интенсивны, чем эквивалентные эмиссионные линии. [c.41]


    При изучении зависимости интенсивности от концентрации натрия в растворе выведено уравнение, учитывающее изменение скорости поступления раствора и различные влияния в пламени [1244]. Получены сравнительные теоретические и экспериментальные данные для различных пламен. Предполагается, что выведенные уравнения можно применить к другим методам пламенной спектрометрии атомной абсорбции и атомной флуоресценции. [c.115]

Рис. 14.62. Схема индукционной горелки для наблюдения атомной флуоресценции в источнике индуктивно-связанной плазмы [96] Рис. 14.62. <a href="/info/21369">Схема индукционной</a> горелки для наблюдения атомной флуоресценции в источнике <a href="/info/583256">индуктивно-связанной</a> плазмы [96]
    Методом АФС можно определять примерно 65 элементов. Пределы обнаружения достигают 10 -10 % (в порошках) и 10 нг/мл (в растворах). Высокая селективность метода (наивысшая среди методов оптической атомной спектроскопии), обусловленная исключительной простотой спектров атомной флуоресценции и очень узкими линиями, является главным достоинством АФС. Метод легко поддается автоматизации, стоимость аппаратуры относительно невысока.- [c.854]

    При резонансной люминесценции квант излучения, испускаемый частицей, равен поглощенному кванту (рис. 14.4.71, а). Резонансная люминесценция характерна преимущественно для атомов, а также для простейших молекул, находящихся в газообразном состоянии при низких давлениях. При этом выделяют особый вид резонансной люминесценции— атомную флуоресценцию, т. е. свечение атомов в газовой фазе, возбуждаемое световыми квантами. [c.499]

    Для возбуждения спектров атомной флуоресценции используют фотоны, обеспечивающие переход атомов из основного в ближайшие к нему верхние состояния. В зависимости от количества фотонов, приходящихся на один акт возбуждения, механизм возбуждения может быть однофотонным или ступенчатым многофотонным. Основные процессы, вызывающие появление спектров атомной флуоресценции, приведены на рис. 14.4.73. Данные схемы объясняют появление в спектре наряду с линиями резонансной флуоресценции (рис. 14.4.73, а, б) линий нерезонансной флуоресценции (рис. 14.4.73, в-е). Нерезонансную флуоресценцию называют стоксовой, если испускаемый фотон меньше поглощенного, и антистоксовой, когда испускаемый фотон больше поглощенного. Если переход из возбужденного состояния в основное осуществляется путем последовательных переходов, каждый из которых сопровождается испусканием фотонов, то такой тип флуоресценции назьшают каскадной флуоресценцией (рис. 14.4.73, д). [c.501]

    В приборах, предназначенных для измерения атомной флуоресценции, первичный анализатор излучения отсутствует, а вторичным анализатором излучения служит либо светофильтр, либо простой и дешевый монохроматор. Функцию кюветы в атомно-флуорес-центных приборах выполняет атомизатор, обеспечивающий перевод анализируемого образца в состояние атомного пера. В качестве атомизатора применяют пламена, аргоновуто высокочастотную индуктивно-связан-ную плазму, электротермические атомизаторы (нагреваемые электрическими током графитовые трубчатые печи, тигли). Для возбуждения спектров возбуждения атомов чаще всего используют высокоинтенсивные лампы с полым катодом и высокочастотные безэлектродные лампы. В последнее время для возбуждения спектров атомной фосфоресценции применяют лазеры с плавной перестройкой частоты (лазеры на красителях). [c.513]

    После этого перехода молекула может терять поглощенную энергию различными путями. Каждый путь зависит от кинетики различных конкурирующих процессов, некоторые из них указаны на рис. 19-19. Например, молекула, заселяющая возбужденный колебательный уровень электронного состояния 5г, может терять энергию в результате излучения фотона, равного по энергии разности между его существующим состоянием и основным состоянием. Однако в растворе эта излучательная потеря энергии имеет гораздо меньшую константу скорости ( 10 с 1), чем конкурирующий процесс колебательной релаксации (обозначенный буквами У/ на рис. 19-19). Колебательная релаксация заключается в переносе колебательной энергии к соседним молекулам и в растворе происходит очень быстро (йа 10 з с- ). По сравнению с этим в газовой фазе возбужденная молекула испытывает гораздо меньше столкновений, поэтому здесь колебательная релаксация является менее эффективной в газовой фазе обычно наблюдается испускание фотона, энергия которого равна поглощенной энергии. Этот процесс называется резонансной флуоресценцией и ему будет отведено-значительное место в рассмотрении атомной флуоресценции в следующей главе. [c.655]

    Мощность атомной флуоресценции прямо пропорциональна квантовому выходу флуоресценции, поэтому состав пламени имеет в данном случае гораздо большее значение, чем в атомно-абсорбционной или в пламенно-эмиссионной спектрометрии. Пламена, в которых в качестве горючего используют ацетилен, являются эффективными для атомизации проб, но не обеспечивают высокого квантового выхода флуорес ценции. Это связано с тем, что радикалы и молекулярные частицы, присутствующие в пламени, являются эффективными тушителями возбужденных атомов, что приводит к уменьшению мощности флуоресценции. Поэтому гораздо более высокие квантовые выходы флуоресценции обеспечивают пламена с водородом в качестве горючего, хотя они и дают недостаточную эффективность переведения вещества в атомный пар. Найдено, что чрезвычайно высокие квантовые выходы флуоресценции обеспечивает пламя водород — аргон — воздух, что является причиной получения очень низких пределов обнаружения элементов при использовании такого пламени. Однако следует отметить, что противоречие между эффективностью перевода в атомный пар растворенного вещества и квантовым выходом флуоресценции все еще является одним из самых важных факторов, ограничивающих применение атомно-флуоресцентной спектрометрии. [c.702]


    Серьезной помехой в атомно-флуоресцентной пламенной спектрометрии может быть и рассеяние пламенем излучения первичного источника, рэлеевское рассеяние и рассеяние Ми (рассмотренные в гл. 18, с. 615) имеют место при всех длинах волн излучения источника и потому вызываемый ими сигнал практически неотличим от сигнала, вызванного резонансной атомной флуоресценцией. Для наилучшей компенсации рассеяния обычно используют следующий прием. В пламя распыляют холостой раствор, идентичный с пробой, ко не содержащий определяемого вещества. При этом допускают, что измеряемый сигнал излучения вызван исключительно посторонним рассеянием, поэтому для получения истинного сигнала флуоресцентного излучения сигнал от холостого раствора следует вычесть из сигнала от пробы. [c.702]

    Созданы непламенные атомизаторы нескольких типов. Обычно они представляют собой стержень, петлю, лодочку или кювету, изготовленные из проводящего электрический ток углерода или металла, в которые помещают пробу. Такие атомизаторы нагреваются путем пропускания через них тока большой силы, что приводит к испарению и частичной атомизации пробы. Эти атомизаторы часто чрезвычайно эффективны, поскольку позволяют использовать очень малые количества проб, и их применение сокращает время на предварительную подготовку пробы к анализу. Непламенные атомизаторы можно использовать и в атомной флуоресценции, но в настоящее время они нашли применение только в атомной абсорбции в связи с большей доступностью атомноабсорбционных спектрометров. [c.705]

    Объясните, почему одновременный анализ нескольких элементов методом атомно-абсорбционной спектрометрии будет более сложным, чем методом атомной флуоресценции или пламенно-эмиссионным методом. [c.717]

    Рентгеновскую флуоресценцию и атомную флуоресценцию можно рассматривать как частные случаи более общего метода, известного под названием флуоресцентного. [c.106]

    Атомно-флуоресцеитная пламенная спектрометрия является самым новым пламенным спектрометрическим методом анализа. Хотя флуоресценцию атомов металлов впервые наблюдал Р. В. Вуд в 1890-х годах, но только в 1964 г. проф. Дж. Д. Вайнфорднер с сотр. использовал атомную флуоресценцию в качестве метода анализа. В результате многих исследований было показано, что атомно-флуоресцентная пламенная спектрометрия по чувствительности, воспроизводимости и удобству работы должна быть конкурентиоспособной с атомно-абсорбционным и пламенно-эмиссионным методами. В настоящее время атомно-флуо- [c.701]

    АА — атомная абсорбция АФ — атомная флуоресценция Ф — флуорометрия СФ — спектрофотометрия И А — инфракрасная спектроскопия РФ — рентгенофлуоресцентный анализ. [c.12]

Рис. 7.16. Оптическая схема во )буждения и регистрации атомной флуоресценции 1 — источник 2 — щель или приемник излучения 3, 4 — сферические зеркала 5 — ли1Т)ы 6 — атомизатор Рис. 7.16. <a href="/info/196341">Оптическая схема</a> во )буждения и регистрации атомной флуоресценции 1 — источник 2 — щель или <a href="/info/147145">приемник излучения</a> 3, 4 — сферические зеркала 5 — ли1Т)ы 6 — атомизатор
Таблица 24ПП Аналитические линии для метода атомной флуоресценции Таблица 24ПП <a href="/info/18842">Аналитические линии</a> для <a href="/info/18477">метода атомной</a> флуоресценции
    Для регистрации спектра флуоресценции применяют светосильные спектрофотометры с большим углом й. Измеряют интенсивность излучения, распространяющегося под прямым углом к возбуждающему излучению (в этом направлении интенсивность рассеянного света обычно минимальна). Методом А.-ф. а. можно определять ок. 65 элементов пределы обнаружения достигают (в порошках) и 10 нг/мл (в р-рах). Высокая селективность метода, обусловленная очень узкими линиями атомной флуоресценции, дает возможность определять одновременно неск. элементоа Для этого вокруг атомизатора устанавливают соответствующее число светосильных спектрофотометров. А.-ф. а. легко автоматизируется, стоимость аппаратуры относительно невысока. [c.218]

    На примере определения натрия в графитовом порошке проверена возможность использования резонансной атомной флуоресценции при использовании перестраивающегося импульсного лазера [59]. Применялся лазер на основе красителя родамин 6Ж, накачку проводили излучением второй гармоники неодимо-кадмиевого лазера. Длительность импульса составляла 2-10 с, мощность 10 Вт, ширина линии генерации 0,1 нм. Атомизацию натрия проводили в атмосфере аргона, температура проволоки 1000 С, концентрация натрия была равна 1,2-10 ат/см . Минимальный регистрируемый сигнал флуоресценции 5-10 Дж. Предел обнаружения ограничивался флуктуациями релеевского рассеяния. [c.134]

    Наряду с атомно-абсорбционной спектрофотометрией для определения 8Ь применяется также метод атомно-флуоресцентной спектрофотометрии как в пламенном [1017, 1018, 1075, 1251, 1392, 1591], так и в непламенном варианте [1322]. Метод основан на переводе анализируемого материала в атомный пар, переходе атомов определяемого элемента иэ невоэбужденного в более высокое энергетическое состояние в результате поглощения резонансного излучения внешнего источника возбуждения, последующем переходе возбужденных атомов в исходное невозбужденное состояние, сопровождающимся характерным для каждого элемента флуоресцентным излучением, интенсивность которого в определенных пределах пропорциональна концентрации атомов определяемого элемента в атомном паре. Атомную флуоресценцию измеряют перпендикулярно к пучку внешнего источника возбуждения, проходящего через атомный пар. [c.94]

    Возбуждение флуоресценции. В качестве источников света в методе АФС используются источники сплошного спектра (напршусер, ксеноновая лампа сверхвысокого давления), а также линейчатого — лампы с полым катодом и высокочастотные безэлектродные лампы. Соотношение между шириной линии возбуждающего излучения и шириной линии поглощения в методе АФС менее критично, чем в методе атомной абсорбции. Однако и здесь желательно, чтобы контур линии излучения был несколько уже контура линии поглощения, в противном случае часть возбуждающего излучения, оказывающаяся вне контура линии поглощения, не участвует в возбуждении флуоресценции и создает лишь паразитный сигнал неселективного рассеяния света интенсивность атомной флуоресценции тем больше, чем больше интенсивность возбуждающего излучения. Речь идет о так называемом линейном режгше флуоресценции. [c.852]

    Описано несколько вариантов определения хрома методом атомно-флуоресцентной пламенной спектрометрии [935]. Измерения проводят на установке, состоящей из модифицированного дифракционного спектрофотометра, распылителя и горелки от спектрофотометра 11п1са1п 8Р 900, безэлектродных ламп ВЧ. Наиболее интенсивными линиями хрома в спектре являются линии 357,87, 359,35, 360,53 нм. Наименьшую концентрацию хрома (0,005 мкг/мл) можно обнаружить в пламени воздух—С2Н2, разбавленном аргоном. Оптимальные расходы воздух — 7 л/мин, С2Н2 — 1,1 л мин, Аг — 10 л мин. В более восстановительном пламени сигнал несколько больше, но фон и помехи от сопутствующих элементов сильнее. Оптимальная высота флуоресцирующей зоны 15—35 мм над горелкой. Калибровочные графики для атомной флуоресценции хрома при 359 нм прямолинейны в интервале 0,01—50 мкг/мл. Исследовано влияние 38 элементов в окислительном пламени при концентрации канодого 0,5 мг/мл и концентрации хрома 2 мкг/мл. Обнаружено небольшое стимулирующее влияние только Се, 81 и Т1. Этот метод используют для определения Сг и Мп в сталях [936]. Железо мешает определению. Его удаляют экстракцией амилацетатом. Процедуру автоматической экстракции применяют при анализе смеси микроколичеств Со, Сг, Си, Ее, Мп, 2п [806]. [c.96]

    При использовании разборной трубки с горячим полым катодом и пламени смеси водорода с воздухом установлена атомная флуоресценция 14 элементов [705]. Предел обнаружения хрома 100 мкг/мл. Исследована возможность определения 13 элементов в пламени С2Н2—воздух по спектрам флуоресценции, возбуждаемым непрерывным источником света (Хе-лампа, 500 вт) при условии одновременного присутствия в растворе посторонних элементов, обладающих интенсивным эмиссионным спектром [679]. Предел обнаружения хрома 3 мкг/мл. Железо и кобальт мешают в количествах > 1 %. Предложен метод с двойной модуляцией — модуляцией излучения источника и модуляцией длины волны возбуждающего излучения в узком спектральном интервале [734]. Используют источник излучения со сплошным спектром (Хе-дуговая лампа). Предел обнаружения хрома 0,6 мкг/мл. [c.96]

    Водородно-воздушное пламя дает более высокую чувствительность атомно-флуоресцентного определения С(1 (0,002 мкг/мл), чем ацетилено-воздушное [577]. Отмечена возможность определения 0,001 мкг СА/мл и с использованием вместо спектральных приборов светофильтров распыление раствора производили непосредственно в водородно-воздушное пламя [763]. Высокая чувствительность — 0,0002 мкг СА/мл — реализована также при применении кислородно-водородного пламени с помощью горелки-распылителя [646]. В турбулентном пламени водород — воздух в комбинированной горелке-распылителе интенсивность атомной флуоресценции легко атомизируемых металлов (в том числе и С(1) в 2—3 раза выше, чем при использовании такого же, но предварительно смешанного пламени в горелке с камерой распыления [514]. [c.131]

    Атомизаторы должны обеспечивать стабильность процесса, полноту и максимальную скорость атомизации определяемых элементов, длительное время пребывания свободных атомов в аналитической зоне при минимальном излучении фона, незначительной ионизации и малом тушении атомной флуоресценции. Компромиссная температура для наблюдения атомной флуоресценции находится в интервале 2000-3000 К для большинства элементов высокой и средней летучести, не образующих очень термостойких соединений. Для термостойких проб эффективно применение индуктивно-связанной плазмы и тлеющего разряда. Для АФА мшфопроб практикуется импульсное распыление микрообъемов жидких проб в пламя или ИНД> КТИВНО-связанную плазму, а для твердых микропроб — [c.851]

    Удобство работы с источником индуктивно-свя-занной плазмы заключается в том, что с небольшими вариациями его можно использовать как для атомно-флуоресцентного, так и для атомно-эмиссионного спектрального анализа. Конструкция горелки для наблюдения атомной флуоресценции показана на рис. 14.62, а в табл. 14.47 суммированы рабочие условия анализа для обоих методов. [c.853]

    Главное достоинство метода АФС — высокая селективность (наивысд среди методов оптической атомной спектроскопии), обусловленная исключительной простотой спектров атомной флуоресценции и, в связи с этим, отсутствием наложения спекгральных линий различных элементов. [c.249]

    Аппаратура для атомно-флуоресцентной пламенной спектрометрии. Как следует из рис. 20-16, аппаратура, используемая в атомно-ф.луоресцентной пламенной спектрометрии, подобна той, какая используется в молекулярной флуоресцентной спектрометрии. Однако, поскольку атомы в пламени могут поглощать излучение только определенной характеристической длины волны, обычно нет необходимости применять монохроматор для возбуждения. Для возбуждения атомной флуоресценции источник излучения фокусируют непосредственно на пламя. Флуоресцентное излучение затем диспергируют с помощью селектора частоты и обнаруживают соответствующим фотодетектором. И, наконец, регистрируют результирующий сигнал на соответствующем устройстве. [c.701]

    Как уже отмечалось, атомно-флуоресцентная пламенная спектрометрия является чрезвычайно чувствительным аналитическим методом. Некоторые пределы обнаружения элементов, приведенные в табл. 20-2, показывают, что этот метод для количественного определения многих элементов более чувствителен, чем атомно-абсорбционная и пламенно-эмиссионная спектрометрия (см. рис. 20-15, с. 700). Такая высокая ч в-ствительность является результатом совмещения в этом методе преимуществ, присущих атомно-абсорбционной и пламенно-эмиссионной спектрометрии. Атомная флуоресценция, подобно атомной эмиссии, обнаруживается путем измерения искомого излучения относительно низкого фонового излучения. Однако подобно атомной абсорбции, атомная флоуресценция основывается не только на энергии пламени для возбуждения атомов, а использует более мощный дополнительный источник возбуждения. [c.703]

    Атомная флуоресценция Характеристическое излучение в нидимой или ультрафиолетовой областях спектра, испускаемое атомами определяемых элементов Резонансные линии, испускаемые возбужденными атомами в УФ и видимой областях спектра Интенсивность измеряется фотоэлектрическим детектором, ось которого располагается под прямым углом к возбуждающему пучку Высокоизбирательный и чувствительный метод, Требуется высокоинтенсивный источник возбуждения проба долж на быть в газообразном состоянии (например, в пламени) Определение Н очень низких концентраций ионов металлов (< 1мкг в растворе, переводймо>1 в аэрозоль) [c.22]


Смотреть страницы где упоминается термин Атомная флуоресценция: [c.133]    [c.195]    [c.135]    [c.136]    [c.131]    [c.132]    [c.501]    [c.593]    [c.630]    [c.704]   
Смотреть главы в:

Новый справочник химика и технолога Аналитическая химия Часть 3 -> Атомная флуоресценция

Инструментальные методы химического анализа  -> Атомная флуоресценция


Аналитическая химия Том 2 (2004) -- [ c.2 , c.40 ]

Физические методы анализа следов элементов (1967) -- [ c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционный спектральный анализ атомная флуоресценция

Аналитические линии для метода атомной флуоресценции

Атомная флуоресценция резонансная

Атомной флуоресценции источники свет

Атомной флуоресценции источники яркость

Атомной флуоресценции кинетика

Атомной флуоресценции насыщение

Градуировочные графики в атомной флуоресценции

Двухуровневые системы в атомной флуоресценции

Механизм влияния различных сред на интенсивность атомной флуоресценции

Отношение интенсивности линии к атомной флуоресценции

Пределы обнаружения элементов для метода атомно-флуоресцентной спектрометрии при распылении анализируемых растворов в источник ИСП и применении лазеров для возбуждения флуоресценции

Термическая активация в атомной флуоресценции

Трехуровневые системы в атомной флуоресценции

Флуоресценция

Флуоресценция атомная, мощность

Эффект последующей фильтрации в атомной флуоресценции

Эффект предварительной фильтрации в атомной флуоресценции



© 2025 chem21.info Реклама на сайте