Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомная флуоресценция резонансная

    Резонансная люминесценция характерна для атомов и некоторых простых молекул при их возбуждении в газовой фазе. Возвращение атомов из возбужденного в нормальное состояние сопровождается излучением кванта люминесценции, равного поглощенному кванту. Обычно у возбужденных атомов происходят те или иные энергетические потери. В результате излучаемые кванты меньше поглощаемых и люминесценция имеет большую длину волны. В настоящее время люминесценцией атомов металлов занимается атомная флуоресценция, которая превратилась в самостоятельный раздел люминесцентного анализа. [c.89]


    Если атом, находящийся в парообразном состоянии, излучает после поглощения резонансного излучения, то возникает атомная флуоресценция. На использовании этого явления основан метод атомно-флуоресцентной спектрофотометрии. [c.381]

    Атомы, возбужденные при поглощении излучения, вновь испускают эмиссионные линии не только той же длины волны, что и поглощенное излучение, но и других длин волн. Такая излучательная дезактивация носит название атомной флуоресценции. Когда наблюдают ту же длину волны, процесс называют резонансной флуоресценцией. Процесс флуоресценции фактически представляет собой комбинацию процессов поглощения и испускания. Флуоресцентные спектры обычно очень просты и накладываются на более сложные эмиссионные спектры, при этом флуоресцентные линии более интенсивны, чем эквивалентные эмиссионные линии. [c.41]

    При резонансной люминесценции квант излучения, испускаемый частицей, равен поглощенному кванту (рис. 14.4.71, а). Резонансная люминесценция характерна преимущественно для атомов, а также для простейших молекул, находящихся в газообразном состоянии при низких давлениях. При этом выделяют особый вид резонансной люминесценции— атомную флуоресценцию, т. е. свечение атомов в газовой фазе, возбуждаемое световыми квантами. [c.499]

    Для возбуждения спектров атомной флуоресценции используют фотоны, обеспечивающие переход атомов из основного в ближайшие к нему верхние состояния. В зависимости от количества фотонов, приходящихся на один акт возбуждения, механизм возбуждения может быть однофотонным или ступенчатым многофотонным. Основные процессы, вызывающие появление спектров атомной флуоресценции, приведены на рис. 14.4.73. Данные схемы объясняют появление в спектре наряду с линиями резонансной флуоресценции (рис. 14.4.73, а, б) линий нерезонансной флуоресценции (рис. 14.4.73, в-е). Нерезонансную флуоресценцию называют стоксовой, если испускаемый фотон меньше поглощенного, и антистоксовой, когда испускаемый фотон больше поглощенного. Если переход из возбужденного состояния в основное осуществляется путем последовательных переходов, каждый из которых сопровождается испусканием фотонов, то такой тип флуоресценции назьшают каскадной флуоресценцией (рис. 14.4.73, д). [c.501]

    После этого перехода молекула может терять поглощенную энергию различными путями. Каждый путь зависит от кинетики различных конкурирующих процессов, некоторые из них указаны на рис. 19-19. Например, молекула, заселяющая возбужденный колебательный уровень электронного состояния 5г, может терять энергию в результате излучения фотона, равного по энергии разности между его существующим состоянием и основным состоянием. Однако в растворе эта излучательная потеря энергии имеет гораздо меньшую константу скорости ( 10 с 1), чем конкурирующий процесс колебательной релаксации (обозначенный буквами У/ на рис. 19-19). Колебательная релаксация заключается в переносе колебательной энергии к соседним молекулам и в растворе происходит очень быстро (йа 10 з с- ). По сравнению с этим в газовой фазе возбужденная молекула испытывает гораздо меньше столкновений, поэтому здесь колебательная релаксация является менее эффективной в газовой фазе обычно наблюдается испускание фотона, энергия которого равна поглощенной энергии. Этот процесс называется резонансной флуоресценцией и ему будет отведено-значительное место в рассмотрении атомной флуоресценции в следующей главе. [c.655]


    Серьезной помехой в атомно-флуоресцентной пламенной спектрометрии может быть и рассеяние пламенем излучения первичного источника, рэлеевское рассеяние и рассеяние Ми (рассмотренные в гл. 18, с. 615) имеют место при всех длинах волн излучения источника и потому вызываемый ими сигнал практически неотличим от сигнала, вызванного резонансной атомной флуоресценцией. Для наилучшей компенсации рассеяния обычно используют следующий прием. В пламя распыляют холостой раствор, идентичный с пробой, ко не содержащий определяемого вещества. При этом допускают, что измеряемый сигнал излучения вызван исключительно посторонним рассеянием, поэтому для получения истинного сигнала флуоресцентного излучения сигнал от холостого раствора следует вычесть из сигнала от пробы. [c.702]

    С целью научно обоснованного выбора благоприятной атмосферы изучено влияние других газов — азота, диоксида углерода, гелия, аргона и воздуха на резонансную флуоресценцию серебра, висмута, кадмия, ртути и таллия при электротермическом методе атомизации проб в виде порошков. Сигнал атомной флуоресценции всех указанных элементов зависит от природы газов. Это свидетельствует о том, что на энергетический выход флуоресценции влияют процессы, происходящие при столкновении с атомами газовой атмосферы. В табл. 4.3 приведены сигналы атомной флуоресценции элементов в различных атмосферах по отношению к сигналу в аргоне. Эти данные показывают, что атомная флуоресценция всех изученных элементов, за исключением кадмия, испытывает сильное тушение кислородом воздуха и диоксидом углерода. Если механизм тушения атомной флуоресценции кислородом не вызывает сомнений, [c.205]

    На основании измерений сигналов атомной флуоресценции в атмосфере различных газов оценен энергетический выход флуоресценции, который для резонансной флуоресценции равен квантовому [444]. Данные таблицы 4.4 подтверждают ранее сделанный вывод о влиянии не только процессов тушения, но и интеркомбинационных переходов на энергетический и квантовый [c.206]

    С увеличением яркости источника возбуждения флуоресценции нарушается пропорциональность между аналитическим сигналом и световым потоком этого источника. Так, при использовании лазеров в качестве источников возбуждения наступает насышение резонансных переходов (насыщение верхних уровней), и энергетический выход флуоресценции приближается к единице [445—447]. В этом случае предел обнаружения элементов снизится и будет ограничен только фликкер-шумом света, рассеянного на оптических неоднородностях зоны формирования аналитического сигнала атомной флуоресценции [444, 448]. Перспективно также применение лазеров и при использовании в аналитических целях нерезонансной флуоресценции. В этом случае подавляется влияние фликкер-шума рассеянного света. [c.207]

    Первая попытка применить атомную флуоресценцию пламени для анализа была предпринята в 1961 году [58]. Автор применил спектрофотометр, установленный таким образом, что он непрерывно регистрировал резонансную линию элемента перпендикулярно световому пучку от пламени, направленному на входную щель монохроматора, устанавливали трубку с полым катодом и измеряли интенсивность линии при освещении пламени светом от полого катода, а после этого измеряли собственное излучение пламени. Автор, осуществляя эти эксперименты и не предполагая обнаружить значительный эффект, указывает, что поглощенная световая энергия излучается атомами во все стороны равномерно, и в монохроматор попадает лишь очень малая часть ее. Проведенные исследования показали, что для натрия (линия 589 ммк) и для никеля (линии 352 и 341 ммк) атомная флуоресценция не обнаруживается, что автор объясняет значительным превышением ин- [c.237]

    Примененная в работе [55] флуоресценция является лишь одни.м из ее видов и носит название резонансной флуоресценции. Для этого типа характерным является излучение той же линии, что и резонансная линия облучающего источника света. Для атомно-флуоресцентного анализа могут быть применены флуоресценция атомов, находящихся в метастабиль-ном состоянии (излучение линии Т1 535 ммк при поглощении линии Т1 378 ммк), однако, по мнению авторов [55], с меньшим успехом флуоресценция резонансных линий с большей длиной волны при поглощении резонансной линии с меньшей длиной волны (излучение линии Na 589 ммк при поглощении линии Na 303 ммк), а также сенсибилизированная флуоресценция, возникающая в результате передачи атомам определяемого элемента энергии атомов другого элемента, возбужденных свето.м его резонансной линии (свечение паров таллия в присутствии паров ртути при облучении светом ртутной дуги). [c.241]

    При поглощении светового кванта атом переходит в неустойчивое возбужденное состояние. Существует ряд процессов, ведущих к распаду этого состояния. Главные из них — спонтанное возвращение атома в нормальное состояние, сопровождаемое излучением фотона той же частоты, что и поглощенный (резонансная флуоресценция) спонтанный переход на промежуточный уровень при излучении фотона меньшей частоты переход на более нижний (или более высокий) энергетический уровень в результате тушащих (или возбуждающих) столкновений с другими атомами, молекулами или электронами вынужденное излучение под воздействием другого фотона той же частоты. Одним из основных результатов таких процессов является излучение фотонов оптически возбужденными атомами, которое называют атомной флуоресценцией. [c.43]


    Другой способ возбуждения атомов связан с облучением УФ-светом той же резонансной частоты, что и в атомной абсорбции, вызывающим излучение этой же или более низкой частоты. Такой метод получил название атомная флуоресценция. Интенсивность излучения зависит от количества флуоресцирующих атомов и, следовательно, от концентрации. [c.201]

    Следует подчеркнуть, что рассеяние происходит не только на частицах в газах пламени и частицах пыли, но и вследствие рэлеевского рассеяния излучения молекулами и атомами, и поэтому последнее явление представляет собой основное ограничение в измерениях методом резонансной флуоресценции. Сечения рэлеевского рассеяния увеличиваются пропорционально AJ где h — длина волны падающего лазерного излучения. Вклад рэлеевского рассеяния (от атомов и молекул) в пламенах соответствует 200—2000 отсчетов в 1 с для типичной флуоресцентной установки, в которой в качестве источника возбуждения используется обычная ксеноновая дуговая лампа на 150 Вт фирмы ElM.iV . Поэтому, допуская, что время интегрирования 10 с и дробовой шум из-за рассеяния мал, шум составляет 100 отсчетов, что типично для ограничивающего уровня шума в обычной атомной флуоресценции с обычными источниками света, особенно в ультрафиолетовой области. Конечно, в видимой области ( 300 нм) шум фона пламени может даже превышать шум рассеяния в некоторых областях спектра. Во всяком случае, величина шума рассеяния, неотъемлемая в любых флуоресцентных методах, достаточно велика, чтобы оправдать крупные исследования в области использования нерезонансной флуоресценции для анализа. [c.229]

    Для исключения сильного тушения резонансной флуоресценции линии ртути 253,7 нм кислородом воздуха [7] испарение проводят в атмосферу аргона. Квантовый выход атомной флуоресценции ртути по линии 253,7 нм в аргоне равен 0,55 в гелии он равен 0,9 в азоте 0,22 в воздухе 0,03  [c.48]

    Атомно-флуоресцентный метод позволяет определять 10 —10 г вещества в самых разнообразных объектах, а также локальные концентрации в светящемся облаке [158, 159]. В этом методе может быть использована бездисперсионная аппаратура. Для получения атомного пара применяют пламенные и непламенные атомизаторы, в качестве источника света — ксеноновые лампы СВД (предел обнаружения натрия 8 10 г). Лазерное возбуждение атомов натрия в пламени позволило определить на фоне загрязнений атмосферы 10 атомов в 1 см . Для наблюдения флуоресценции натрия используют чаще всего резонансные дублеты 589,0—589,6 и 330,23— 330,30 нм. [c.133]

    На предел обнаружения натрия влияют дробовой и фликкер-шумы пламени и рассеяние света лазера с непрерывным спектром. В этом методе предел обнаружения приближается к пределу обнаружения в атомно-эмиссионном методе. Для резонансной флуоресценции отношение сигнал/шум не возрастает при повышении мощности лазера до 1 кВт. Для нерезонансной флуоресценции высокая мощность приводит к снижению тушения флуоресценции. [c.134]

    Метод атомной флуоресцентной спектроскопии в воздушно-пропановом, воздушно-водородном пламени [761, 832] и смеси пропана и ацетилена с воздухом [1627] позволяет определять микроколичества серебра. При возбуждении паров серебра светом высокоинтенсивной лампы с полым Ад-катодом наблюдается резонансная флуоресценция атомов серебра при 328,1 и 338,3 нм [1627]. Область определения концентраций серебра 0,01—10 мкг мл в водных растворах и 0,0005—10 мкг мл после обогащения экстракцией серебра в виде салицилата ди-к-бутиламмония метилизобутил-кетоном. Чувствительность прямого определения серебра 5-10 , а с обогащением — 4-10 мкг мл. Ионы Са, Ге, Нд, Na, К, Си, РЬ и 7п при концентрации 1 мг мл определению 1 мкг мл серебра не мешают А1 снижает результаты определения. При освещении пламени дуговой Хе-лампой чувствительность определения составляет 1-10 % [1189], а для пламени смеси водорода и воздуха чувствительность равна 0,001 мкг мл [832]. [c.117]

    Основной помехой при атомно-флуоресцентных определениях элементов является рассеянное излучение, которое возникает вследствие рассеяния излучения от источника возбуждения на атомах и молекулах анализируемого образца. Рассеянное излучение часто маскирует слабые сигналы резонансной флуоресценции. Во избежание помех, связанных с рассеянным излучением, для измерения используют линии нерезонансной флуоресценции. В этом случае эффект возбуждения достигается лишь с помощью лазеров. [c.514]

    Установка для атомно-флуоресцентного анализа включает те же блоки, что и установка для атомно-абсорбционного анализа, а именно интенсивный источник резонансного излучения, служащий для оптического возбуждения атомов определяемого элемента, пламя, играющее роль аналитической ячейки, и спектральный прибор с фотоэлектрической регистрацией, установленный под прямым углом к направлению падающего на пламя пучка света и служащий для измерения флуоресценции атомов в пламени. Для отделения оптической флуоресценции от посторонних радиационных помех пламени применяется модуляция возбуждающего потока света [c.243]

    На примере определения натрия в графитовом порошке проверена возможность использования резонансной атомной флуоресценции при использовании перестраивающегося импульсного лазера [59]. Применялся лазер на основе красителя родамин 6Ж, накачку проводили излучением второй гармоники неодимо-кадмиевого лазера. Длительность импульса составляла 2-10 с, мощность 10 Вт, ширина линии генерации 0,1 нм. Атомизацию натрия проводили в атмосфере аргона, температура проволоки 1000 С, концентрация натрия была равна 1,2-10 ат/см . Минимальный регистрируемый сигнал флуоресценции 5-10 Дж. Предел обнаружения ограничивался флуктуациями релеевского рассеяния. [c.134]

    Наряду с атомно-абсорбционной спектрофотометрией для определения 8Ь применяется также метод атомно-флуоресцентной спектрофотометрии как в пламенном [1017, 1018, 1075, 1251, 1392, 1591], так и в непламенном варианте [1322]. Метод основан на переводе анализируемого материала в атомный пар, переходе атомов определяемого элемента иэ невоэбужденного в более высокое энергетическое состояние в результате поглощения резонансного излучения внешнего источника возбуждения, последующем переходе возбужденных атомов в исходное невозбужденное состояние, сопровождающимся характерным для каждого элемента флуоресцентным излучением, интенсивность которого в определенных пределах пропорциональна концентрации атомов определяемого элемента в атомном паре. Атомную флуоресценцию измеряют перпендикулярно к пучку внешнего источника возбуждения, проходящего через атомный пар. [c.94]

    Атомная флуоресценция Характеристическое излучение в нидимой или ультрафиолетовой областях спектра, испускаемое атомами определяемых элементов Резонансные линии, испускаемые возбужденными атомами в УФ и видимой областях спектра Интенсивность измеряется фотоэлектрическим детектором, ось которого располагается под прямым углом к возбуждающему пучку Высокоизбирательный и чувствительный метод, Требуется высокоинтенсивный источник возбуждения проба долж на быть в газообразном состоянии (например, в пламени) Определение Н очень низких концентраций ионов металлов (< 1мкг в растворе, переводймо>1 в аэрозоль) [c.22]

    В начале главы I была показана связь между атомной эмиссией, абсорбцией и флуоресценцией. Явление атомной флуоресценции было исследовано Вудом еще в начале нашего века, а Вайнфорднер [125] первым использовал его для химического анализа. Свет от интенсивного источника резонансного излучения исследуемого элемента фокусируется в пламени. Пучок флуоресцентного излучения наблюдают под углом 90° к направлению пучка света от источника и пропускают через монохроматор к фотоприемнику. Теоретически этот сигнал пропорционален концентрации атомов элемента в пламени. Чтобы отличить сигнал флуоресценции от излучения той же длины волны, вызванного термическим возбуждением атомов в пламени, свет источника модулируется, и электронная схема детектора настраивается на частоту модуляции. Необходимо также отличать сигнал флуоресценции от света, который рассеивается пламенем. В некоторых случаях это осуществляется путем освещения пламени светом такой длины волны, которая возбуждает атомы до более высокого энергетического уровня, и наблюдением флуоресценции на другой длине волны, излучаемой возбужденными атомами при переходе на метастабильные уровни. [c.51]

    Кроме процессов тушения атомной флуоресценции возможно существование и других процессов при столкновении возбужденного атома определяемого элемента с атомами и молекулами газов. Известно, что атомы инертных газов при столкновении с возбужденными атомами способствуют интеркомбинационным переходам, в результате чего интенсивность одних линий элементов уменьшается, а интенсивность других возрастает. Так, интенсивность резонансной атомной флуоресценции линии Нд 253,7 нм в атмосфере азота уменьшается с одновременным ростом интенсивности линии Нд 404,7 нм [443]. Аналогичное явление наблюдается не только для ртути, но и для других элементов в атмосферах азота и гелия. Эффективность йнтерком-бинационных переходов зависит от расположения энергетических уровней сталкивающихся атомов. Таким же образом можно объяснить усиление атомной флуоресценции ртути в гелии по сравнению с аргоном. По-видимому, в последнем случае происходят более эффективные интеркомбинационные переходы, приводящие к уменьшению резонансной флуоресценции. [c.206]

    Интересно отметить 13-кратное усиление интенсивности линии Сс1 326,1 нм нерезонансной флуоресценции атомов кадмия при атомизации пробы угольного порошка в атмосфере азота по сравнению с атомизацией в атмосфере аргона. Предел обнаружения кадмия методом резонансной атомной флуоресценции с применением линии С(1 228,8 нм и защитной атмосферы аргона примерно равен пределу обнаружения с применением Нере-зовансной флуоресценции линии С(1 326,1 нм в атмосфере азота. Однако чувствительность анализа (тангенс угла наклона градуировочного графика) с применением линии Сс1 326,1 нм меньше, чем для линии Сс1 228,8 нм. Факт усиления интенсивности линии С(1 326,1 нм отмечен в работе [442]. Передачу энергии авторы связывают с дезактивацией уровня 5 1 атомов кадмия молекулами азота, что приводит к безызлучатель-ному переходу электронов на уровень 5 Рь а затем к переходу на уровень 5 5о с излучением линии Сс1 326,1 нм. Если атомный пар кадмия облучать светом безэлектродной шариковой лампы с длиной волны Аз 228,812 нм, близкой к длине волны Сс1 228,804 нм, то нерезонансная флуоресценция кадмия с длиной волны С(1 326,1 нм в атмосфере аргона отсутствует, но наблюдается в атмосфере азота. [c.206]

    Строго говоря, в процессе резонансной ф.ауоресценцин подразумевается, что нижним уровнем перехода является основной уровень. Хотя этот процесс чаще всего встречается в атомной флуоресценции, определение, приведенное выше, является более общим, чем это, и включает переходы, у которых нижним состоянием не является основное состояние. [c.192]

    В качестве примера показан спектр атомной флуоресценции ниобия в пламени К гО — ацетилеп, показывающий потенциальную применимость других, а не резонансных линий флуоресценции, для которых сильное рассеяние будет действительно ухудшать аналитические сигналы илп даже делать анализ невозможным. [c.233]

    Калий К 39,1 4,34 эВ. Наиболее яркий резонансный дуплет калия рас-юложен на границе видимой п ннфракрасноп областей . = 766,49 и 766,9 нм. (торой дуплет главной серии лежит в фиолетовой области л = 404,72 и 04,41 нм. Эти линии легко возбуждаются в спектре флуоресценции. Однако 1Т0МНЗЯ флуоресценция, кажется, никогда не исследовалась с точки зрения е использования для анализа обычных химических образцов. Вероятно, по- ому, что эта задача решается достаточно просто другими спектроскопиче-кими методами, в частности, методом пламенной спектрофотометрии. При-(енение атомной флуоресценции калия при исследовании плазмы описано palee (см. гл. III и 76]). [c.85]

    Рассмотрим возможность снижения предела обнаружения атомнофлуоресцентного метода анализа. Предел обнаружения любого метода определяется, как известно, отношением сигнал/шум. В случае атомнофлуоресцентного метода энергия от источника резонансного возбуждения поглош,ается атомами определяемого элемента и с некоторыми энергетическими потерями преобразуется в излучение атомной флуоресценции, распространяющееся во все стороны. Если е — квантовый выход флуоресценции (е < 1), равный для резонансной флуоресценции энергетическому выходу, 2/4я — угол, под которым собирается для регистрации флуоресцентное излучение, то аналитический сигнал атомной флуоресценции Фаф будет равен [c.49]

    Здесь имеется в виду, что частота ш далека от резонансных частот колебаний электронов (атомных линий поглощения) и Аа не зависит от со. Подчеркнем, что в отличие от явлений люминесценции (флуоресценции, фосфоресценции) и комбинационного рассеяния в рассматриваемых процессах опалесценции не происходит изменения дпины волны — такое рассеяние назьшают упругим . Поэтому при освещении системы монохроматическим светом опалесценция имеет тот же цвет. При освещении системы белым светом преимущественное рассеяние коротких волн, предсказываемое уравнением Рэлея, вызывает голубой цвет опалесценции. Так, цвет неба связан с рассеянием света на неоднородностях атмосферы. [c.195]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    В качестве атомизаторов для ЗЬ наиболее часто используют пламена. Изучена [1251] возможность атомно-флуоресцентного определения ЗЬ в различных пламенах с применением в качестве источника света высокоинтенсивной лампы с полым катодом и атомно-абсорбционного спектрофотометра Вариан-Тектрон АА4, видоизмененного для атомно-флуоресцентных измерений. Исследованы пламена смесей На — воздух, — Аг, Н — Оа — Аг и СаНа — воздух. Наиболее эффектным оказалось пламя смеси На с Аг (диффузное) с расходом 0,95 л1мин На и 5,5 л мин Аг. Когда тушение флуоресценции мало, наибольшей чувствительностью характеризуются резонансные линии ЗЬ 206,83 217,58 и 231,15 нм, по которым пределы обнаружения ЗЬ найдены равными соответственно 0,1, 0,03 и 0,1 мкг мл. В пламени смеси На с Оа и Аг (1,15 л мин На, 0,2 л мин Оа и 5,5 л мин воздуха) пределы обнаружения ЗЬ по тем же линиям несколько хуже (соответственно 0,1, 0,05 и 0,1Ъ мкг мл). [c.94]

    Принципиальная схема аналитического лазерного атомнофлуоресцентного спектрометра практически не отличается от схемы флуоресцентного спектрометра, в котором для возбуждения используют какой-либо классический источник света. В блоке атомизатора анализируемый образец переводится в состояние атомного пара, содержащего, в том числе, и атомы определяемой примеси. Резонансное излучение источника света возбуждает эти атомы, а их флуоресцентное излучение собирается (обычно в перпендикулярном направлении) в спектральный прибор и детектируется фотоэлектронной системой. Использование перестраиваемого лазера в качестве источника для возбуждения флуоресценции позволяет возбудить максимально возможное число атомов примеси, присутствующей в зоне анализа. В ЛАФ- спектрометре проводится прямой анализ образцов с отбором пробы 20 мкл, одно определение занимает 3-5 мин. [c.245]

    Как и в атомной абсербции, импульсная атомизация твердых проб посредством дугового нагрева намного повышает чувствительность атомно-флуоресцентного определения кадмия. Оптимальная длительность импульса составляет 1,5—2,5 сек. и связана с формой рюмочного электрода (в который помещают пробу), весом пробы и током дугового разряда. Флуоресценцию возбуждают модулированным резонансным излучением безэлектродной высокочастотной лампы, чувствительность определения в чистом графите по линии 2288,0 А составляет 3-10 % С(1, ошибка — 30— 40% для содержаний порядка 10 С(1% она снижается до 20— 30% [36]. Этот способ применен для определения кадмия в стекло-углероде и графитовом порошке. Чувствительность атомно-абсорбционного анализа их на порядок, а эмиссионного спектрального — на 3 порядка ниже флуоресцентного [214]. В другой работе [c.131]

    Основные помехи в методе АФА. Основными помехами в методе АФА являются неселективно рассеянное излучение возбуждающего источника света и тушение флуоресценции при столкновениях возбужденного атома с окружающими его атомами и молекулами. Оба процесса происходят в атомизаторе. Неселективно рассеянное излучение, проникая вместе с полезным сигналом в систему спектральной фильтрации, завышает его величину. Наиболее сильно влияние рассеянного излучения проявляется в случае наблюдения резонансной флуоресцещии. Для учета рассеянного излучения применяются устройства, аналогичные зеемановскому корректору фона в атомно-абсорбционном методе, и различные способы временной селекции полезного сигнала и фона. Влияние рассеянного излучения резко снижается в случае наблюдения смещенных линий флуоресценции. Однако этот способ не всегда может бьггь реализован в силу специфики строения энергетических уровней атомов. [c.854]

    Мёссбауэровская спектроскопия (МС) напоминает оптическую резонансную флуоресценцию с той разницей, что вызвана она переходами между ядерными, а не между атомными энергетическими уровнями. [c.383]

    АТОМНО-ФЛУОРЕСЦЕНТНЫИ АНАЛИЗ (атомно-флуоресцентная спектрометрия), метод количеств, элементного анализа по атомным спектрам флуоресценции (см. Люминесценция). Для получения спектров атомный пар пробы облучают излучением, частота к-рого совпадает с частотой флуоресценция определяемых атомов (резонансная флуоресценция). Р-ры исследуемых в-в атомизируют чаще всего в пламенах, реже — в электротермич. атомизаторах, нагреваемых током графитовых тиглях и печах порошки — в тиглях и капсулах, помещенных в пламя. Хим. состав пламен и защитную атмосферу тиглей подбирают так, чтобы тушение флуоресценции было минимальным. Источниками возбуждения служат интенсивные импульсные лампы с полым катодом, лазеры и др. Спектр флуоресценции регистрируют с помощью простых светосильных спектрофотометров. Интенсивность линий флуоресценции — мера конц. элементов в пробе. Для градуировки прибора примен. стандартные образцы известного хим. состава, соответствующего составу пробы. Осн. достоинства метода большая селективность, низкие пределы обнаружения (в р-рах — 10- нг/мл, в порошюх — до 10- —10- % для таких летучих элементов, как d и Ag), большой интервал конц., в к-ром градуировочный график прямолинеен (обычно 1—2 порядка величины концентрации, а с применением лазеров — до 5), простота автоматизации. А.-ф. а, использ. для определения приблизительно 50 элементов в сплавах, горных породах, лунном грунте, растениях, почвах, водах, нефтях, пищ. продуктах и т. д. [c.59]

    Метод атомной резонансной флуоресценции — измерение интенсивности флуоресценции, возникающей при поглощении резонансного излучения, — имеет некоторые преимущества по сравнению с методом резонансного поглощения для кинетических исследований реакций атомов в основном состоянии. Если в качестве источников резонансного излучения используются микроволновые разрядные лампы с обычно сильным самообра- [c.316]

    Среди методов, используемых для изучения структуры молекул и внутримолекулярных взаимодействий, одним из самых молодых является мёссбауэровская спектроскопия, или ядерная у-резонансная флуоресценция. Этот метод основан на резонансном поглощении и испускании у-квантов атомными ядрами твердого тела. Он получит, вероятно, такое же широкое распространение в области неорганической химии, какое метод ЯМР получил в органической химии. [c.198]

    После того как Релей предсказал, а Вуд в 1904 г. экспериментально обнаружил существование резонансной флуоресценции, т. е. резонансного рассеяния и поглощения света, это открытие явилось предметом многочисленных успешных исследований в атомной физике и оптике [39]. Хотя предсказанияРелея были сделаны на основе чисто классического (механического) описания резонансных явлений, само существование таких явлений в микросистемах является, конечно, сугубо квантовым свойством, связанным с наличием спектральных линий, характеризующих переходы между определенными энергетическими уровнями. [c.8]


Смотреть страницы где упоминается термин Атомная флуоресценция резонансная: [c.131]    [c.575]    [c.576]    [c.578]    [c.552]    [c.134]    [c.192]    [c.217]    [c.851]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная флуоресценция

Резонансная флуоресценция

Резонансные

Флуоресценция



© 2025 chem21.info Реклама на сайте