Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомно-эмиссионный фотоэлектрический

    Медь высокой чистоты. Общие требования к методам анализа Медь высокой чистоты. Методы атомно-спектрального анализа Медь высокой чистоты. Метод химико-атомно-эмиссионного анализа Медь высокой чистоты. Метод эмиссионно-спектрального анализа с фотоэлектрической регистрацией спектра [c.576]


    Все возрастающие требования к скорости и точности анализа обусловили внедрение в практику атомно-эмиссионного спектрального анализа фотоэлектрических способов [c.78]

    Все количественные методы атомно-эмиссионного анализа по способу регистрации спектров разделяют на визуальные, фотографические и фотоэлектрические. [c.675]

    При определении натрия в силикатных породах (гнейсах, гранитах, сиенитах) с содержанием не менее 10 % используют метод Аренса для концентрирования щелочных и щелочноземельных элементов с последующим определением натрия атомно-эмиссионным методом по линии 588,9 нм в воздушно-ацетиленовом пламени [424]. Пламенно-фотометрическая установка сконструирована на основе двойного стеклянного монохроматора ДМ. Фотоэлектрическое устройство состоит из фотоумножителя ФЭУ-17, выпрямителя ВВС-1 и зеркального гальванометра М-21. [c.156]

    Чугун. Метод фотоэлектрического спектрального анализа Чугун и сталь. Методы спектрографического анализа Порошок железный. Метод фотоэлектрического спектрального анализа Сталь. Метод фотоэлектрического спектрального анализа Кобальт Методы химико-атомно-эмиссионного спектрального анализа [c.821]

    Разработана установка для атомно-эмиссионного анализа жидких проб с генератором индуктивно связанной плазмы в качестве источника возбуждения спектров. Генератор создан на основе серийного высокочастотного генератора. Мощность плазменного разряда 1,5—2,5 кВт. В состав установки, помимо источника возбуждения спектров, входят устройства фотоэлектрической и фотографической регистрации, а также автоматизированный микрофотометр. Установка снабжена мини-ЭВМ, что позволяет оперативно полу- [c.10]

    Измерения интенсивности спектральных линий в атомном эмиссионном спектральном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическим способами. В первом случае приемником излучения служит глаз, во втором — фотоэмульсия, в третьем — фотоэлемент или фотоэлектрический умножитель (ФЭУ) [1,3]. Однако первые два способа имеют скорее историческое значение. [c.228]

    Все возрастающие требования к точности и скорости анализа обусловили внедрение в практику атомно-эмиссионного спектрального анализа фотоэлектрических способов регистрации и фотометрии спектров. Сущность этих методов заключается в том, что световой поток нужной аналитической линии отделяют от остального спектра пробы с помощью монохроматора и преобразуют в электрический сигнал. Мерой интенсивности линии служит значение этого сигнала (сила тока или напряжение). [c.228]


    Вопрос о преимуществах фотографической или фотоэлектрической регистрации при обнаружении очень слабых спектральных линий в случае анализа достаточно однородных материалов нельзя считать практически окончательно решенным. Теоретически преимущество должно принадлежать фотоэлектрическим приемникам, квантовый выход которых на порядок и более превосходит эквивалентный квантовый выход фотографических эмульсий. Соответствующие расчеты, выполненные в работах [748, 429], указывают, что с помощью фотоэлектрической регистрации, производящейся в оптимальных условиях, можно обнаруживать в 3—5 раз менее интенсивные спектральные линии, чем с помощью фотографической регистрации. Оптимальные условия для фотоэлектрической регистрации в некоторых методах- спектрального анализа (эмиссионный анализ растворов методом пламенной фотометрии, атомно-абсОрбционный анализ и др.) часто реализуются непосредственно (в первую очередь благодаря высокой стабильности аналитического сигнала во времени), либо легко могут быть созданы с помощью простых технических средств (например, модуляции сигнала). Именно поэтому фотоэлектрическая регистрация широко применяется в перечисленных методах анализа, обеспечивая не только удобство, экспрессность и высокую точность определений, но и возможность обнаружения очень малых содержаний искомых элементов. (Правда, нет сравнительных экспериментальных данных, из которых следовало бы, что применение в этих методах анализа фотографической регистрации не может обеспечить достижения таких же или меньших пределов обнаружения.) [c.67]

    Таким образом, при практически одинаковых характеристиках в отношении точности, чувствительности и производительности определений, обеспечиваемых фотоэлектрическими схемами регистрации, аппаратура для атомно-абсорбционных измерений проще, компактнее и дешевле, чем для эмиссионных. [c.376]

    При разработке аппаратуры для атомно-абсорбционного анализа с использованием пламен на первых порах применяли несколько устаревшие схемы, близкие по конструкции к употреблявшимся ранее в пламенной эмиссионной спектроскопии. В дальнейшем, однако, удалось существенно повысить точность определений, а также усовершенствовать конструкции приборов на основе опыта, накопленного при разработке автоматизированной фотоэлектрической аппаратуры для эмиссионного спектрального анализа квантометров, полихроматоров и других приборов подобного типа. К тому времени теоретические и экспериментальные исследования спектров абсорбции достигли весьма высокого уровня. Были разработаны, в частности, столь важные для практики разделы, как теория уширения спектральных линий, детально изучено строение спектров абсорбции, исследован механизм процессов поглощения и излучения света веществом, находящемся в различных агрегатных состояниях, в том числе и в состоянии квазиравновесной плазмы. Другими словами, к началу практического использования спектров абсорбции в аналитической химии имелась уже фундаментальная основа метода, вполне достаточная для обоснования и выбора оптимальных экспериментальных решений. [c.7]

    Измерения интенсивности спектральных линий в атомно-эмиссионном спектраньном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическим способами. В первом случае приемником излучения служит глаз, во втором — фотоэмульсия (фотохимический детектор), в третьем — фотоэлектрический детектор. Каждый способ имеет свои преимущества, недостатки и оптимальную область применения. [c.391]

    Авторы настоящего обзора применяют в своей работе атомно-абсорбционный спектрофотометр, собранный на базе монохроматора ЗМР-3, состоящий из фотоэлектрической приставки с ФЭУ-18, электрометрического усилителя ЭМУ-4, самописца ЭПП-09 и стабилизированных источников ВС-9, УИП-1 и VSU-1 для питания фотоумножителя, ламп с полым катодом и водородной лампы, используемой в качестве источника сплошного излучения, а также спектрофотометр на базе ИСП-51 (с ФЭП-1), перед входной щелью которого установлен блок, состоящий из натриевой лампы и интерференционных фильтров для натрия и калия. Прибор позволяет одновременно определять эмиссионным методом калий (с помощью фильтра) и кальций (по линии 4227А с помощью ИСП-51) и атомно-абсорбционным методом — натрий (с помощью фильтра). Атомно-абсорбционная аппаратура лабораторного изготовления, включая лампы с полым катодом, детально описана в [133]. [c.37]


Смотреть страницы где упоминается термин Атомно-эмиссионный фотоэлектрический: [c.393]    [c.381]    [c.417]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фотоэлектрический эф ект

гом эмиссионный



© 2025 chem21.info Реклама на сайте