Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные исследовани

    Результаты теоретического анализа структур диаграмм фазовых равновесий и процессов с учетом химического взаимодействия составляют также основу для экспериментального исследования совмещенного процесса. Приводятся некоторые результаты экспериментальных исследований и примеры создания технологических схем, включающих реакционно-ректификационные процессы, [c.186]


    На основании экспериментальных исследований было выведено эмпирическое уравнение, связывающее тенденцию к нагарообразованию топлив с отношением С Н и температурой выкипания 10% (для индивидуальных углеводородов — с температурой их кипения)  [c.83]

    Действительный механизм катодного выделения водорода на каждом данном металле удается установить на основании всесторонних экспериментальных исследований и их сопоставления с выводами, вытекающими из теории возникновения различных видов перенапряжения. [c.406]

    Абсорбция СО2 водными растворами карбоната и бикарбоната натрия или калия — процесс, который был исследован рядом авторов. Он представляет практический интерес как метод удаления СО2 из газов и теоретический интерес как легкодоступный для экспериментального исследования явления химической абсорбции. [c.125]

    Так как экспериментальное исследование динамики объекта проводится по каждому из имеющихся каналов при стабилизированных значениях остальных входных воздействий, то общая структурная схема может быть преобразована в схему объекта с одним входом X одним выходом У(f  [c.24]

    Результаты теоретических и экспериментальных исследований подобного рода течений воды (плотины и дамбы) и нефти (пласты) в грунтах обобщены в монографиях [22]. Успешно проанализированы многие практически важные задачи о распределении давления и потоков, когда масштабы течения столь велики по сравнению с размерами зерен, что весь зернистый слой можно считать квазиоднородной средой с одной обобщен- ной характеристикой — проницаемостью. Структура же потока и поле скоростей в промежутках между зернами изучены слабо. Поэтому приходится в основном базироваться на различных, весьма идеализированных моделях этой структуры, рассчитывать на основании введенной модели. проницаемость слоя и. сопоставляя с экспериментом, вводить определенные поправки и [c.33]

    Вполне очевидно, что экспериментальное исследование коэффициента теплоотдачи в зависимости от всех указанных переменных величин было бы невозможно. В данном случае известную помощь оказывает теория подобия, значение которой явственно видно при экспериментах на моделях с водой. Нуссельт впервые применил теорию подобия для решения вопросов теплообмена. При помощи указанной теории можно показать, что коэффициент теплоотдачи а зависит не от каждой вышеназванной величины в отдельности, а от определенной совокупности всех величия. Эти характеристические совокупности являются безразмерными критериями и носят различные названия. [c.29]


    В настоящее время имеется значительное число теоретических и экспериментальных исследований тепло- и массопереноса при естественной конвекции в горизонтальных зернистых слоях. Однако больщинство из них выполнено для слоя, заполненного жидкостью, применительно к задачам подземной гидродинамики и нефтедобывающей промышленности. Обзор этих исследований содержится в работах [19, 20]. [c.109]

    Применение электронно-вычислительной техники в последние годы позволило решать численными методами многие задачи, связанные с процессами переноса в зернистом слое, при -расчете этих процессов в промышленных аппаратах и при обработке опытных данных, полученных на экспериментальных установках. При этом появилась возможность использовать двухфазные модели зернистого слоя, учитывающие разницу температур между обеими фазами и теплообмен между ними. Ниже рассмотрены некоторые задачи, связанные с методами экспериментального исследования теплопереноса в зернистом слое и требующие учета гетерогенной структуры слоя. [c.168]

    На основании экспериментальных исследований гидроакустических параметров модуляторов различных конструкций установлено, что в зависимости от кинематики совмещения прорезей роторе и статоре достаточно отчетливо выявляются три режима работы гидромеханический смеситель, гидромеханический пульсатор и акустический излучатель. Построение математической модели режимов работы позволило выявить ведущий конструктивный параметр аппарата, разграничивающий эти режимы. Мы назвали его дугой накопления , физический смысл которого — длина дуги, на протяжении которой сохраняется состояние взаимного перекрытия перфораций ротора и статора модулятора их телами. При величине дуги накопления меньше О аппарат работает в режиме обычного смесителя (мешалки). При величине зтого параметра, равной нулю, возникают гидромеханические [c.63]

    М а л а ф е е в Г. Е. и др. Экспериментальное исследование нагревания пласта при радикальном течении водяного пара. Нефтяное хозяйство , 1969, № 6. [c.136]

    При определении коэффициента теплоотдачи а по рассмотренным уравнениям влияние Д и Я учитывается достаточно точно. Однако экспериментально полученные значения коэффициента теплоотдачи оказываются часто большими значений, полученных по этим формулам. Это, по-видимому, происходит от того, что при экспериментальных исследованиях и в практических условиях наряду с пленочной конденсацией на некоторых участках поверхности конденсации имеет место также и капельная конденсация, в результате чего непосредственно замеренные величины получаются более высокими, чем теоретические. [c.85]

    Результаты экспериментального исследования теплоотдачи при кипении некоторых [c.121]

    На фиг. 98 приведены результаты экспериментального исследования теплопередачи при вынужденном движении воздуха через пучок ребристых трубок. Результаты представлены в виде зависимости коэффициента теплопередачи к от скорости течения воздуха. Опыты проводились при обогреве трубок паро.м и водой. У ребристых трубок размеры наружной (оребренной) и внутренней (гладкой) поверхностей различны. Это различие необходимо учитывать при выводе формулы для расчета коэффициента теплопередачи. Обычно теплопередачу относят к единице гладкой (внутренней) поверхности трубки. При этом справедливо соотношение [c.202]

    Такие внешне противоречивые данные экспериментальных исследований обусловлены физиологией растений чувствительность растений к кислотности дождей в значительной степени определяется их генотипом. Кроме того, урожайность растений зависит не только от кислотности дождя, но и от его химического состава. Например, при повышенном содержании азотной кислоты по сравнению с содержанием серной урожайность снижается значительнее. [c.24]

    Экспериментальное исследование коэффициента теплоотдачи при конденсации паров ВОТ на вертикальных трубках производилось в двух вертикальных конденсаторах экспериментальной установки. [c.308]

    Теоретические и экспериментальные исследования Л. С. Лейбензона начались в 1921 г. в Баку. Ему принадлежит приоритет в постановке и решении ряда задач нефтегазовой и подземной гидромеханики. Им проведены первые исследования по фильтрации газированных жидкостей, сформулированы задачи нестационарной фильтрации при расчетах стягивания контуров нефтеносности при вытеснении нефти водой, получены фундаментальные результаты в развитии теории фильтрации природного газа. [c.4]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]


    Такие экспериментальные исследования были проведены В. И. Дуровым. Им определены дополнительные фильтрационные сопротивления и С2 для различных видов несовершенства скважин и построены графики зависимости от параметров а = и И = Ь/к (рис. 4.11), а также С от трех параметров пП , / = 1 /В и а = (рис. 4.12), где и-число перфорационных отверстий на 1 м вскрытия толщины пласта  [c.120]

    Двухфазная модель реактора с псевдоожиженным слоем катализатора является сравнительно новой и разработку ее основных положений пока нельзя считать законченной. Экспериментальные исследования с целью проверки теории двухфазной модели малочисленны и их результаты в известной мере противоречивы. Это, в первую очередь, относится к определению величин скорости газа в плотной и газовой фазе. [c.131]

    Экспериментальное исследование аналогий [c.100]

    А, Азимов лишь очень кратко касается развития одной иэ важнейших и в познавательном, и практическом смысле областей химии — химии элементоорганических соединений. Не упоминает он и о работах Виктора Гриньяра (1871 — 1935), получившего в 1900 г. магний-галогенорганические соединения (реактивы Гриньяра). Вклад советских ученых П. П. Шорыгина, А. Е. Арбузова, А. Н. Несмеянова, К. А. Кочеткова, К. А. Андрианова в развитие элементоорганической химии особенно велик. Достаточно упомянуть о синтезе кремнийорганических соединений, проведенном К. А. Андриановым, уже в 30-х годах запатентовавшим свои открытия. Не упоминает А. Азимов и об открытии органических соединений переходных металлов. Вместе с тем синтез ферроцена, дибензилхрома был своеобразной химической сенсацией и стимулировал многочисленные теоретические и экспериментальные исследования. См. Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н. Истор я химии (примечание 13 к гл. 10). [c.186]

    Условия процесса могут быть постоянными по всему сечению реактора только при хорошем поперечном перемешивании реагирующей смеси. Последнее обычно описывается эффективным коэффициентом поперечной диффузии Е . В неподвижном слое поперечное перемешивание вызывается разделением и слиянием потоков при обтекании твердых частиц. Анализ этого процесса с помощью метода случайных блужданий приводит к значению радиального числа Пекле Ре = vdJE , равному — 8. В многочисленных экспериментальных исследованиях в неподвижных слоях без химических реакций были найдены числа Пекле от 8 до 15 причем при Ке > 10 число Пекле не зависит от числа Рейнольдса. Это подтверждает предположение о том, что поперечное перемешивание является чисто гидродинамическим эффектом. Числа Пекле для переноса тепла те же, что и для переноса вещества, а это говорит о пренебрежимо малой роли твердых частиц в процессе поперечной теплопроводности. С уменьшением числа Рейнольдса ниже 10 число Пекле сначала возрастает, но затем начинает уменьшаться, так как при [c.263]

    Таким же образом может быть обработана химическая абсорбция с реакцией первого порядка в режиме перехода от медленной к быстрой реакции. Решение этой задачи было проведено Астарита [22]. Пленочный односферный абсорбер хотя и более сложен, чем пленочная колонна, однако весьма удобен в работе теоретический расчет скоростей физической абсорбции хорошо подтверждается экспериментом [23], а вторичные эффекты малозначительны. Поверхность раздела фаз в нем составляет 10—40 м и время диффузии 0,1—1 сек. Одно экспериментальное исследование химической абсорбции в переходном режиме от медленной реакции к быстрой обращает на себя внимание ошибочной математической обработкой [24] исследования в режиме медленной реакции были успешными [25]. [c.95]

    Практически используется щелочь с концентрацией не ниже 0,1 г-мол1л, поэтому даже при 20° С время реакции составляет по крайней мере 2-10 сек. Время диффузии практически всегда больше этой величины. Таким образом, в любом случае химической абсорбции нет необходимости рассматривать режим медленной реакции. В экспериментальном исследовании, конечно, можно создать условия, приближающиеся к режиму медленной реакции. [c.138]

    Эксперименты по абсорбции СОг растворами сильных щелочей в лабораторных абсорберах проводились еще с 1928 г. [6] с целью проверки ранних положений теории химической абсорбции. Экспериментальное исследование абсорбции чистого СОз проводили Ледиг и Вивер (7], Мицукури [8], Дэвис и Кренделл. [9] и Хйтч-кок [10]. Хатта [6] использовал смесь воздуха с СОа. Все эти результаты показывают, что коэффициент абсорбции возрастает с увеличением Ьо. Это прямо указывает на химическую абсорбцию, хотя провести различие между быстрой и мгновенной реакцией не так просто. Хатта [6] интерпретировал полученные им данные как подтверждение результатов теории мгновенной реакции. Среди ранних данных о системе, рассматриваемой в настоящей главе, следует упомянуть обширные данные Позина [И], которые наилучшим образом интерпретируются на основе теории мгновенной реакции. [c.139]

    При экспериментальном исследовании сопротивления шара или частицы иной формы надо учитывать осложняющие факторы. Если частица обдувается в аэродинамической трубе, то обтекание может нарушаться держателем, который закрепляет ее в определенном положении. Кроме того, существенна и степень начальной турбулентности обдувающего потока. Так, при больших значениях критерия Re, рассчитанного на диаметр частицы, сильно турбулентный внешний поток может разрушить турбулентный след, образующийся за частицей, и изменить закон ее сопротивления. Незакрепленные и взвешенные в потоке частицы могут вращаться, изменять свою ориентацию по потоку и совершать сложное непрямолинейное движение. Подробный обзор исследований, посвященных влиянию турбулентности набегающего потока, вращения, шероховатости и формы частиц и других факторов на сопротивление, приведен в серии статей Торобина и Говэна [12]. [c.28]

    Диффузионная и кинетическая картина процесса многокомпонентной ректификации выяснена пока недостаточно, поэтому создание обоснованного во всех деталях, теоретически строгого метода расчета сложной колонны оказыиается весьма трудной задачей. Экспериментальные исследования рабочего процесса действующих колонн не дали пока таких существенных результатов, которые исчерпывающим образом объяснили бы все особенности развития и протекания как процесса в целом, так и отдельных его ступеней. Этим объясняется широкое использование в анализе работы ректификационных колонн термодинамического метода исследования, покоятцегося на гипотезе теоретической тарелки. [c.301]

    Далее, если придерживаться нижней оценки скорости, то величина локального давления, создаваемая кумулятивной струей, может составить МПа. Следовательно, силовое воздействие кумулятивных струй становится соизмеримым с воздействием ударных волн. Пространственная метрика явления по экспериментальным исследованиям Г. И. Кувшинова [312] оценивается по формуле (3-5)5пгах 0.5 мм, где Зтах — максимальный диаметр коллапсирующего пузырька. [c.168]

    Бугай А. С. Экспериментальные исследования и разработка центробежно-пульсационного аппарата для размола волокнистых материалов, применяемых в бумажной промышленности Автореферат дис.. .. канд. техн. наук.— Красноярск Сибирский технолог. ин-т, 1966. — 12 с. [c.187]

    Мандрыка Е. А. Экспериментальные исследования кинетики процесса растворения в роторном аппарате с модуляцией потока (РАМП) Автореферат дис.. .. канд. техн. наук.— М. МИХМ, [c.196]

    Сиротюк М. Г. Экспериментальные исследования ультразвуковой кавитации // Мощные ультразвуковые поля Сб. — М. Наука, 1968, [c.199]

    Смородов Е. А. Экспериментальные исследования кавитации в вязких жидкостях Автореферат дис,, ,, канд, физ,-матем, наук, - М, АКИН АН СССР, 1987,- 24 с, [c.199]

    При решении практических задач нефтепромысловой геологии с помощью температурных исследований могут быть использованы работы [47, 53—54], в которых по данным многочисленных наблюдений рассматриваются и уточняются термодинамические и тектонические особенности ведущих нефтяных месторождений Татарии и Азербайджана. Так, в работе Ш. Ф. Мехтиева и др. [47] излагаются основк геотермии применительно к естественному и искусственному тепловым полям земной коры в бурении и эксплуатации нефтяных и газовых скважин, разработке нефтегазовых залежей и методам определения геотермического градиента и приводятся значения геотермического градиента некоторых месторождений. Работа Н. Н. Непримерова и др. [54] написана на основании многолетних экспериментальных исследований авторов и посвящена изучению нарушений теплового режима Ромашкинского нефтяного месторождения с внут-риконтурной выработкой продуктивных пластов холодной водой и последствий, вызванных этими нарушениями. В книге дается описание измерительной аппаратуры и методики исследований нефтегазовых месторождений, приведен разбор геотермических параметров и описаны наиболее распространенные типы тепловых полей над геологическими структурами, исследована роль термо- [c.8]

    За границей -проведено. много тщательно подготовленных экспериментальных исследований для того, чтобы получить надежную базу для расчета поверхностей нагрева и охлаждения. Этому вопросу было посвящено несколько трудов. В них излагается содержание весьма обширного научно-исследовательского материала. В большинстве случаев авторы не ограничиваются какими-либо определенными формулами. В некоторых оправочииках в главах, посвященных теплопередаче, -приведены формулы, которые в настоящее время являются уже устаревшими или слишком упрощенными для того, чтобы можно было, пользуясь ими, правильно рассчитывать теплообмен. [c.27]

    Выводы, получаемые на основании излагаемой теории и результатов экспериментальных исследований, основываются на ряде упрощающих предпосылок и часто соответствуют лищь идеальным условиям. На практике обычно наблюдаются сложные случаи теплопередачи и такие производственные условия, при которых наслоение накипи или образование инкрустации на поверхности теплообмена весьма удаляют условия, при которых в действительности происходит передача тепла, от идеальных. Отсюда следует сделать вывод, что без необходимого практического опыта, основанного на проверке теории измерениями, проведенными в производственных условиях, правильный расчет теплового оборудования невозможен. [c.28]

    Многочисленные экспериментальные исследования и, в частности, опыты Дж. Фэнчера, Дж. Льюиса и К. Бернса, Линдквиста, Г. Ф. Требина, Н. М. Жаворонкова, М. Э. Аэрова и других были направлены на построение универсальной зависимости (по аналогии с трубной гидравликой) коэффициента гидравлического сопротивления Х от числа Рейнольдса. Однако вследствие различной структуры и состава пористых сред получить такую универсальную зависимость не удается. [c.19]

    Обширный цикл экспериментальнйх исследований, связанных с кону- сообразованием, выполнен Д. А. ЭфрббЬм и его сотрудниками на щелевых моделях. В результате этих исйледований было подтверждено неравенство (7.64) для предельного безводного дебита. Экспериментальное исследование нестационарного га %ого конуса на физической модели проведено А. К. Курбановым.  [c.226]

    Большая серия экспериментальных исследований по физическому моделированию таких процессов была выполнена В. Г. Оганджанянце Й с сотрудниками [66]. Эксперименты проводились на прозрачных моделях пористых сред. Результаты этих работ были позднее проанализи -рованы и теоретически описаны. Приведем здесь качественное описание явлений, происходящих при вытеснении несмешивающихся жидкостей в двухслойном пласте с различными характеристиками. [c.282]

    Однако установить однозначную зависимость между N и Ре одновременно от всех вероятностных характеристик пока не удается. Совмеш ение одной вероятностной характеристики приводит к расхождению других. Так, несмотря на внешнее сходство кривых (Л, i) и г[з (Pe i) они по своей сущности значительно отличаются друг от друга. Этот факт объясняется тем, что перенос вещества в ячейках и между ними характеризуется не только числом Ре., о чем свидетельствуют данные экспериментальных исследований, связанных с определением коэффициента продольного переноса. Соотношениями (IV.62) и (IV.63) легко объяснить значения коэффициента продольного переноса в газофазных реакторах с сильно тур-булизированным режимом, когда достигается равенство между эффективными коэффициентами продольного переноса и температуропроводности, т. е. при Z) = a i — = Kf , где X и Су — соответственно коэффициенты теплопроводности и теплоемкости реагирующей массы. В этом случае, предположив, что длина ячейки-реактора AL равна диаметру зерна катализатора [82 ] при L о и Л > 10, [c.104]

    По данным экспериментальных исследований, длительность работы катализатора без снижения активности при слое высотой 1 л, контактных нагрузках 0,2— 0,28 кг 3,4-ДХНБ на 1 л катализатора, начальной температуре 60-90С X = 1 — 2000 ч. При тех же условиях, но контактной нагрузке 1,1 кг 3,4-ДХНБ на 1 л катализатора и х = 0,5 0,8 катализатор без снижения активности работает 700 ч. [c.114]


Смотреть страницы где упоминается термин Экспериментальные исследовани: [c.165]    [c.180]    [c.507]    [c.8]    [c.30]    [c.159]    [c.124]    [c.282]    [c.76]   
Очерк общей истории химии (1969) -- [ c.160 , c.242 , c.260 , c.261 , c.271 ]




ПОИСК







© 2025 chem21.info Реклама на сайте