Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Входная щель

    Спектрограф ИСП-28. Спектрограф ИСП-28 предназначен для фотографической регистрации спектров в области от 200 до 700 нм. Свет от источника света / (рис. 23) линзой конденсора 2 направляется на кювету с исследуемым веществом 8 и на входную щель 3. Перед входной щелью помещается диафрагма с фигурными вырезами, при помощи которой вырезается определенный участок входной щели. [c.37]

    В первом отечественном квантометре ДФС-10 (позднейшая модификация — ДФС-36) полихроматор снабжен 36-ю передвижными щелями, позволяющими одновременно выделять из спектра 36 спектральных линий. Прибор имеет рабочую область спектра 190—700 нм. В качестве диспергирующего элемента использована вогнутая дифракционная решетка с 1200 или 1800 штрих/мм и радиусом кривизны 2 м. Входная щель, дифракционная решетка и выходные щели размещены по кругу Роуланда (диаметр круга равен радиусу кривизны решетки). Для уменьшения габаритных размеров прибора круг Роуланда расположен вертикально. Прибор позволяет выполнять анализ по 12-ти различным программам, причем число определяемых элементов по каждой из программ можно варьировать от 1 до 35. Для одновременного определения десяти элементов в одном образце требуется не более 2 мин. [c.70]


    В современных спектральных приборах для выделения соответствующих полос возбуждающего света и света флуоресценции используются монохроматоры. В этих спектральных приборах требуемый спектральный интервал выделяется при помощи щелей, линз и зеркал, а диспергирующими элементами служат призмы или дифракционные решетки. Больщую роль при измерении спектра люминесценции играют размеры входной и выходной щелей. Входная щель — щель для возбуждающего света — подбирается достаточно большой (1—2 мм) для получения существенной интенсивности люминесценции. При подборе размера выходной щели — щели для света люминесценции — используют соотношение между геометрической шириной щели (з, мм) и спектральной шириной щели (Ла, нм)  [c.65]

    Основными частями спектрального прибора (рис. 3.7) являются входная ш,ель 5, освещаемая исследуемым излучением объектив коллиматора 0, в фокальной плоскости которого расположена входная щель 5 диспергирующее устройство О, работающее в параллельных пучках лучей фокусирующий объектив Ог, создающий в своей фокальной поверхности Р монохроматические изображения входной щели, совокупность которых и образует спектр. В качестве диспергирующего элемента, как правило, используют либо призмы, либо дифракционные решетки. [c.67]

    Свет от электрической лампочки / (рис. 19) направляется на конденсор с диафрагмой 2. Параллельный пучок света проходит через кювету, укрепленную на подвижном столике, позволяющем легко устанавливать на пути луча поочередно кювету с раствором и кювету с растворителем. Далее пучок света собирается конденсором 3 на входной щели 4, защищенной стеклом 5. Изображение щели проектируется объективом коллиматора 6 на призму 7, которая разлагает свет в спектр и изменяет направление пучка света на 90°. Объективом камеры 8 [c.32]

    Изображение входной щели прибора вогнутым сферическим зеркалом 4 проектируется на дисперсионную призму 5, где свет разлагается в спектр. Изображение спектра сложным объективом 6 проектируется на фотографическую пластинку 7. [c.38]

    Сместить микрометрическим винтом спектрограмму так, чтобы на входную щель проектировался незасвеченный участок спектрограммы вблизи спектральной линии. 4. Открыть затвор и установить маховичком И О по логарифмической шкале (см. рис. 35). 5. Измерить почернения, перемещая столик микрофотометра со спектрограммой микрометрическим винтом через каждые 0,01 мм. 6. Вычертить кривую зависимости почернения фотопластинки от смещения спектра (в миллиметрах). Выбрать правильный масштаб по осям координат. [c.448]


    Исследование влияния конструктивных параметров на потери напора и снижение скоростей проводили в сушильной камере с тангенциальными входными щелями, равномерно распределенными на поверхности конфузорного участка. На первом этапе изучали режим работы камеры с движением газов в сторону сужающегося конуса, являющегося основным узлом в конструкции исследуемой вихревой распылительной сушилки. На втором этапе исследований были получены результаты для режима, при котором газы направляли в сторону расширяющейся части конуса. Результаты исследований предполагалось использовать [c.164]

    Листовой свинец толщиной 3 мм имеет отверстия размером 3 мм на каждые 9—12 мм площади. За этими листами расположены отбойные листы с отверстиями, совпадающими по оси с первыми, но с диаметром отверстий 6 мм. За ними расположен коллектор — пластина с отверстиями 2 мм, расположенными через каждые 3 мм. В устройствах со стеклянными полосами входные щели размером 1,5 мм, а щели в отбойных пластинах — 3 мм они расположены друг от друга на 8 мм. [c.235]

    Рабочее пространство аппарата частично заполнено пористым диэлектриком, который имеет сильно развитую поверхность и препятствует интенсивному перемешиванию эмульсии в процессе работы. Нефтепродукт поступает в свободное пространство аппарата через тонкую входную щель, где происходит контактная зарядка капель воды,, Таким образом, эмульсия поступает в камеру аппарата уже заряженной. В свободном объеме камеры происходит интенсивное перемешивание эмульсии за счет возникающих под действием электрического поля электрогидродинамических потоков. [c.17]

    При фотографировании спектра входная щель прибора имеет конечное значение а. Следовательно, интервал длин воли ДА. сплошного спектра, отвечающий значению изображения щели спектрографа Д/, составит [c.128]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    Свет от источника света / (рис. 21) проектируется конденсором 2 и плоским зеркалом Я на входную щель прибора 4. Изображение входной щели сферическим зеркалом 5 фокусируется на кварцевую призму 6 с зеркальной грапььэ. Свет, разложенный в спектр, вновь проектируется сферическим зеркалом 5 на нижнюю часть щели 4, которая вырезает из спектра мо Юхроматнческий участок. Прн вращении призмы на плоскости выходной щелн изображение спектра будет [c.34]

    Последовательность выполнения работы. 1. Зарядить кассету фотографической пластинкой размером 9 х 24 или 9 X 12 в зависимости от участка спектра. Пластинка размером 9 хМ2 помещается в среднюю часть кассеты. Для помещения в кассету фотопластинки задняя крышка кассеты открывается и пластинка помеш,ается вниз эмульсией. После этого кассета закрывается и маховичок на крышке кассеты поворачивается в направлении закр . Заряжать кассету фотопластинкой следует в фотокабине. 2. Установить кассету в кассетной части спектрографа и прижать ее двумя винтами сверху. Выдвинуть переднюю крышку кассеты. 3. Включить водородную лампу, для чего включить стабилизатор в сеть и поставить выключатель накал в положение включено . Через 2 мин повернуть выключатель высокое напряжение в положение включено . Включить подсвет шкалы. 4. Собрать кювету, заполнить ее исследуемым веществом и поместить на столик перед входной щелью. Установить заданное положение кассеты. 5. Снять спектр поглощения с заданной экспозицией. Для этого рычажок затвор справа от входной щели ставится в положение откр . 6. Изменить положение кассеты, в кювету поместить растворитель и повторить съемку спектра с той же экспозицией. Если в работе необходима съемка нескольких спектров, то операции 5 и б повторяются. При этом необходимо каждый раз устанавливать заданное положение кассеты. 7. Снять миллиметровую шкалу. Для этого на определенное время прижимается миллиметровая шкала поворотом против часовой стрелки маховичка справа от кассеты. При этом загорается сигнальная лампа над кассетой. По окончании экспозиции миллиметровая шкала отводится от пластинки и лампочка гаснет. 8. Закрыть переднюю крышку кассеты и снять кассету. 9. Проявить и зафиксировать фотопластинку. Для проявления фотопластинки в фотокабине открыть кассету и поместить пластинку в кювету с проявителем вверх эмульсией. Кювету следует периодически покачивать. Через 8 мин фотопластинку вынуть из кюветы с проявителем, промыть водой и поместить в кювету с фиксажем. Примерно через 5—8 мин, если пластинка стала прозрачной, без белых пятен, ее вынуть из кюветы с фиксажем, тщательно промыть проточной водой и высушить. Если па пластинке имеются белые пятна, то фиксирование продолжить. [c.38]


    Изображение освещенной снаружи входной щели отражается плоским зеркалом 7 и проектируется сменным объективом 8 иа сменную призму 9. При двойном прохождении света через призму с зеркальной гранью свет разлагается в спектр, который проектируется объективом 8 на фотографическую пластинку 10. Вследствие больнюго расстояния в ходе луча близко расположенные спектральные линии на фотографический пластинке получаются раздельно. Для выполнения [c.39]

    Перед входной щелью помещается диафрагма с фигурным или ступенчатым вырезом, служащая для фотографирования спектров сравнения рядом со спектром изучаемого вещества. На фотопластинке получается лишь небольшая часть спектра. Участок спектра устанавливается при помощи барабана длин волн с двумя шкалами для стек- лянной оптики С и для [c.40]

    Свет от источника света / (рис. 29), представляющего собой сили-товый стержень, нагреваемый электрическим током, проходит через защитное сгекло 2, отражается от плоского посеребренного снаружи зеркала на вогнутое сферическое зеркало 4, которое проектирует свет через защитное стекло 5 и кювету с исследуемым веществом 7 на входную щель монохроматора 9, защищенную стеклом 8. Между защитным стеклом 5 и кюветой 7 помещается зеркальная заслонка 6. Изображение входной Н1,ели 9 проектируется вогнутым параболическим зеркалом 10 на днсперсиортую призму //, где свет разлагается в спектр. Выходящий из призмы свет отражается плоским зеркалом 12 и вновь проходит через призму 11. Изобрал<ение спектра проектируется параболическим зеркалом 10 и плоским зеркалом 13 на плоскость 14 с ВЫХ0Д1ЮЙ щелью, вырезающей нз спектра монохроматический участок. Изображение выходной щелн, отраженное плоским зеркалом 15, [c.43]

    Перед фотометр и рованием каждого спектра следует проверять установку пера потенциометра прн закрытой щели микрофотометра, если необходи ю, то корректировать корректором на усилителе. Если на диаграммную ленту нeoбxoди ю перенести деления миллиметровой шкалы, изображенной на спектрограмме, то аналогично фотометри-рованию спектра фотометрируется миллиметровая шкала. Для этого маховичком 9 она устанавливается так, чтобы ее деления проектировались бы на входную щель микрофотометра. Каждое деление миллиметровой п]калы будет зарегистрировано на диаграммной ленте в виде четкого максимума. [c.59]

    Через 2—3 мин промывки газом кюветы закрыть кран капельной ворош<и закрыть кран, соединяющий колбу Вюрца со склянкой для осушки газа и закрыть входной и выходной краны кюветы. 3. Отвернуть крыии<и, предохраняющие окна кюветы от порчи атмосферной влагой. Установить газовую кювету перед входной щелью прибора. [c.62]

    Последовательность выполнения работы. 1. Приготовить два угольных электрода длиной 4—5 см. Концы электродов слегка заточить на конус. Оба электрода закрепить в электрододержателе на специальном калибровочном столике, при помощи которого устанавливается определенное, заданное стеклянным калибром расстояние между электродами и положение разрядного промежутка. 2. Приготовить аналогично два железных электрода. 3. Установить деление 360 по шкале длин волн для стеклянной оптики (индекс С ). 4. Установить ширину входной щели 0,01 мм. Диафрагму с фигурным вырезом установить в положение / (рис. 39, а). 5. Зарядить в фотокабине кассету фотопластинкой 9 X X 12. Для этого следует повернуть запор задней крышки кассеты в положение откр. , открыть заднюю крышку и поместить фотоплас- [c.66]

    Установить кювету с веществом в осветитель, 2. Пустить воду в рубашку для охлаждения осветителя и в тепловой фильтр. 3. Включить ртутно-кварцевую лампу и на короткое время нажать на кнопку конденсатора. При этом должна загореться ртутная ламиа. Напряжение иа вольтметре ири этом должно упасть практически до нуля, а затем постепенно повыситься примерно до 120 в. 4. Зарядить фотопластинку в кассету. Для этого в полной темноте открыть заднюю крьпнку кассеты и поместить вниз эмульсией фотопластинку размером б X 9. Закрыть заднюю крышку кассеты и поместить кассету в кассетную часть спектрографа. Открт гть переднюю крышку кассеты, выдвинув се до отказа вправо. Накрыть кассетную часть прибора черной тканью. 5. Установить входную щель па приборе 0,1 мм. [c.79]

    Последовательность выполнения работы. 1, Спять спектр комбинационного рассеяния. Возбуждающая е-линия ртути. Входная щель прибора 0,1 мм. Экспозиция 60 —120 мин (чем больше молекулярный вес вещества, тем больше должна быть экспозиция). 2. Снять спектр железа. Щель 0,01 мм. Экспозиция 2 мин. 3. Определить волновые числа всех наблюдаемых линий комбииациоиного рассеяния. 4, Определить частоты колебаний атомов в молекуле. 5. Отнести каждую линию комбинационного рассеяния к определенному колебанию (зарисовать форму колебания и указать частоту). 6. Установить степень вырождения каждого колебания. [c.81]

    В этом уравнении опущена незначительная энергия отдачи и введена работа выхода ( 4 эВ) внутренних металлических поверхностей спектрометра РФС. Работа выхода материала спектрометра — это энергия, необходимая для удаления электрона с поверхности спектрометра. Работа выхода образца отличается от работы выхода материала спектрометра. Образец в спектрометре РФС находится в электрическом контакте со спектрометром, и, если имеется достаточное число носителей заряда (многие образцы представляют собой диэлектрики и носители заряда образуются в ходе облучения), уровни Ферми для образца и спектрометра будут одни и те же. Уравнение (16.25) можно понять, рассмотрев экспфимент РФС. При фотоионизации электрон образца получает некоторую кинетическую энергию ,. Для того чтобы попасть в спектрометр, электрон должен пройти через входную щель. Поскольку рабочие потенциалы спектрометра и образца различны, кинетическая энергия электрона изменяется до что обусловлено либо ускорением, либо замедлением фотоионизованного электрона входной щелью. В камере спектрометра электрон имеет кинетическую энергию и эта энергия измеряется прибором. Таким образом, для соотнесения энергии связывания с уровнем Ферми в выражение вводится К счастью, нет необходимости знать работу выхода каждого образца. [c.334]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой пластинки б. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке И и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличинает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]

    На рис. 3 представлен пример экспериментальной установки, В нижней части рисунка показана детекторная система малого разрешения, основой которой является призма из кристалла галогенида щелочного металла (Na l, КВг), разворачивающая попадающее на входную щель излучение в инфракрасную радугу . Выходная щель вырезает инфракрасное излучение требуемой длины волны для последующего преобразования при помощи термопары. Попадающее на термопару излучение имеет постоянную составляющую, формируемую тепловым излучением полости монохроматора, и флуктуирующую составляющую, проходящую через входную щель. Флуктуирующая составляющая возникает в результате прерывания по- [c.486]

    ИЛИ водородом. Излучение лампы фокусируется зеркалами А[ и Лг на входную щель 4 монохроматора. При помощи зеркала на диспергирующее устройство / (призму из высококачественного кварца или дифракционную решетку) направляется параллельный пучок излучения. На диспергирующем устройстве излучение разлагается в спектр, изображение которого тем же зеркалом Лз фокусируется на выходной щели 5 монохроматора. Выходная щель из полученного спектра источника вырезает узкую полосу спектра. Чем уже щель, тем более монохрома тичная полоса спектра выходит пз монохроматора. Излучение называется монохроматическим, если в нем все волны имеют одинаковую частоту. Средняя длина волны, характеризующая данную полосу спектра, определяется углом поворота диспергирующего устройства вокруг оси. Затем зеркалом Л4 монохромахизированный пучок света разделяется на два одинаковых по интенсив 0ст и луча луч, проходящий через кювету сравнения я через кювету с образцом. Вращающейся диафрагмой 6 перекрывают попеременно то луч сравнения, то луч образца, чем достигается разделение данных лучей во времени. Зеркалами Л5 лучи сравнения и образца фокусируются на кювете сравнения и образца соответственно. Требования к фокусировке пучка лучей на кюветах в современных приборах очень высокие ширина пучка должна быть порядка 1—2 мм на расстоянии 10— 40 мм. Только с такими узкими пучками света, проходящими через кюветы, возможно использование микрокювет. После прохождения кювет световой поток зеркалами Ав направляется на детектор 7, которым обычно служит фотоэлемент или фотоумножитель. [c.12]

    I — источнин облучения 2 — входная щель 3 —линзы 4 — монохроматор возбуждения 5 — кювета с исследуемым веществом б — монохроматор приемника 7 — выходная щель й — фотоумножитель 9 — записывающее устройство [c.64]

    Особенно высокая концентрация создается около щелей, поскольку масс-спектрометр конструируется таким образом, чтобы все ионы, проходящие через входную щель ускоряющего поля, фокусировались на выходную щель. При диссоциации ионов около входной щели осколки получают обычное ускорение, и такие ионы принимают участие в образовании нормальных пиков спектра. Но те ионы, которые диссоции- [c.23]

    Установка ДФС-44 представляет собой невакуумный вариант квантометра ДФС-40. Она предназначена для анализа металлов, сплавов и порошкообразных материалов, имеющих сложный спектр. В конструкции полихроматора предусмотрено новое устройство сканирования и автоматической корректировки положения спектра, которое осуществляется дискретным перемещением входной щели с помощью управляемого от ЭВМ шагового двигателя. В штативе прибора имеется устройство, обеспечивающее автоматическую последовательную установку 18-ти пар электродов на оптическую ось. Прибор дополнительно комплектуется источником индуктивно-связанной плазмы. [c.71]

    Связь источника света со спектральным прибором осуществляется посредством специальной осветительной системы, которая направляет излучение источника на входную щель так, чтобы обеспечивалось полное заполнение апертурной диафрагмы. В простейшем случае роль коиденсорной системы может выполнять обычная линза. Однако в спектральном анализе осветительная система чаще всего должна создавать равномерную освещенность плоскости входной щели. Поэтому наиболее широкое применение получила трехлинзовая система освещения щели, предложенная Кёлером (рис. 3.8). [c.73]

    Линза / создает увеличенное изображение источника света в плоскости линзы 3. Револьверная диафрагма 2 вырезает из этого изображения необходимый участок, экранируя концы раскаленных электродов, что значительно снижает интенсивность мешающего сплошного спектра. На щели 5 получается равномерно освещенный круг — изображение линзы 1. Линза 4, располагающаяся в непосредственной близости от входной щели, служит для устранения виньетирования. При наличии виньетирования освещенность в плоскости объектива коллиматора получается неравномерной максимальная освещенность соответствует центральным зонам источника света, а к краям источника освещенность падает. Антивиньетирующую линзу подбирают таким образом, чтобы на коллиматорном объективе получить увеличенное изображение источника, не превышающее, однако, размеров коллиматорного объектива. Линзы 1 и 3 для удобства работы должны быть ахроматическими. Иначе для разных областей спектра необходимо при работе изменять расстояния между источником и линзами ], 3 а 4. [c.73]

    Вначале на пластинку изоорто или панхром фотографируют спектр ленточной лампы. Затем при тех же условиях освещения входной щели фотографируют спектры исследуемых образцов, используя стержень из чистой меди в качестве верхнего электрода. Для усреднения результатов для каждого образца получают по 4—5 спектров, варьируя время экспозиции. Встык со спектрами образцов снимают спектр железа. [c.130]


Смотреть страницы где упоминается термин Входная щель: [c.33]    [c.49]    [c.54]    [c.58]    [c.59]    [c.63]    [c.67]    [c.71]    [c.80]    [c.175]    [c.254]    [c.254]    [c.50]    [c.11]    [c.13]    [c.203]    [c.265]    [c.72]    [c.77]   
Фото-люминесценция растворов (1972) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте