Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие трехкомпонентных двухфазных систем жидкость—пар

Рис. 34. Фрагмент концентрационной диаграммы двухфазного равновесия жидкость — жидкость в трехкомпонентной системе Рис. 34. Фрагмент <a href="/info/10357">концентрационной диаграммы</a> двухфазного равновесия жидкость — жидкость в трехкомпонентной системе

    Равновесие в системе Ж—Г характеризуется правилом фаз, указывающим необходимые условия существования данного количества фаз, т. е. число параметров, характеризующих равновесие, законом распределения компонента между фазами и константой равновесия химических реакций. Для перечисленных процессов характерны главным образом двухфазные системы, содержащие один, два и более компонентов. Фазовое равновесие для этих систем изображается в виде диаграмм состав — свойство, чаще всего состав — температура кипения. Так, например, диаграмма состав — температура кипения трехкомпонентной системы Н2О—НМОз—Н2504 (рис. 75) позволяет определить равновесные составы жидкости и паров кипящих смесей или температуры кипения смесей заданного состава при равновесии. На анализе этой диаграммы и расчетах при помощи ее основано производство концентрированной азотной кислоты ректификацией смесей разбавленной азотной и концентрированной серной кислот. Графическое изображение распределения компонентов между фазами при равновесии дается, например, в координатах С —где — равновесное содержание компонента в газовой фазе С ж—содержание компонента в жидкой фазе. Для процессов абсорбции и [c.156]

    Равновесие системы, состоящей из трех компоиентов А, В, С) с ограниченной взаимной растворимостью изображают, как и В случае трехкомпонентной системы пар—жидкость, в плоскости равностороннего треугольника (рпс. IX-7), Прн этом различают системы с одной, двумя н тремя парами ограниченно растворимых жидкостей. Признаком первой системы является неограниченная взаимная растворимость В в Л и С, но ограниченная А в С (например, бензол—этанол—вода). В диаграмме равновесия (рис. 1Х-7, а) точки D и Е соответствуют насыщенным растворам А С. Площадь под кривой DKE, носящей название биноидальной кривой, соответствует гетерогенным (двухфазным) смесям Д + В + С, а площадь вне биноидальной кривой — гомогенным трехкомпонентным растворам А В С. Каждая точка в гете- рогенной области может рассматриваться как смесь двух равновесных трехкомпонентных растворов. Так, например,, смесь. Изображаемая точкой М, образует два несмешивающихся насыщенных раствора L и N., Все смеси, изображаемые точками на прямой LN, носящей название к о н о д ы, или хорды р а в-Н о в е с и я, образуют те же растворы L и N нх составы могут быть определены по правилу рычага. В гетерогенной области Диаграммы можно провести сколько угодно конод, причем обычно [c.435]


    Действительно, если для полного определения бивариантной двухфазной системы бинарной смеси при заданном общем давлении достаточно знать лишь концентрацию одного из компонентов в одной из фаз, то для полного определения /г-вариант-ной двухфазной системы, состоящей из п компонентов, необходимо знать уже концентрации п—1 компонентов в одной из фаз при заданном общем давлении. В общем случае это означает, что кривая фазового равновесия (изобара) для каждого компонента, находящегося в многокомпонентной смеси, является фупкциейпе только физико-химических свойств (качества) других компонентов, но и их абсолютных концентраций (количества). Этим собственно и отличается многокомпонентная смесь от бинарной смеси, где кривая фазового равновесия (изобара) для каждого из двух компонентов зависит только от физико-химических свойств (качества) другого. Следовательно, каждый компонент такой сложной смеси имеет не одну кривую фазового равновесия, а бесчисленное множество их, в зависимости от содержания других компонентов, что приводит к необходимости располагать многочисленными данными по равновесным соотношениям. Установление этих данных экспериментальным путем требует большого труда даже в случае трехкомпонентных смесей и практически становится невыполнимым если речь идет о смесях с большим числом компонентов. Более того, как уже говорилось выше, такой путь изучения равновесных соотношений здесь даже исключается, потому что данные, экспериментально установленные при каком-либо одном режиме для заданного разделения смеси, не могут быть использованы существующими методами для проведения расчетов при изменении хотя бы одного из условий этого режима для того же самого разделения смеси, например, при изменении флегмового числа. Проведение расчетов существующими методами становится возможным только в случае идеальной смеси, в которой летучесть каждого компонента пропорциональна абсолютной мольной доле этого компонента при любой температуре и любом давлении [481. Такие идеальные многокомпонентные смеси состоят обычно из химически родственных компонентов (например, смеси углеводородов в нефтяной или коксо-беизольной промышленности и т. д.) и равновесные соотношения для каждого компонента этой смеси в системе пар-— жидкость описываются достаточно точно уравнением  [c.78]

    Равновесие в трехкомпонентных двухфазных системах жидкость— жидкость принято изображать графически в виде треугольных диаграмм Гиббса с нанесенными на них бинодальными кривыми, отделяющими области расслоения системы и конодами. На практике встречается шесть типов трехкомпонентных двухфазных систем  [c.47]


Смотреть страницы где упоминается термин Равновесие трехкомпонентных двухфазных систем жидкость—пар: [c.328]    [c.220]   
Смотреть главы в:

Справочник по разделению газовых смесей методом глубокого охлаждения -> Равновесие трехкомпонентных двухфазных систем жидкость—пар




ПОИСК





Смотрите так же термины и статьи:

Двухфазные системы газ—жидкость

Двухфазные системы жидкость—жидкость

Равновесие в системе жидкость жидкость

Равновесие жидкость пар

Равновесие жидкость пар в системах

Равновесие системе

Система двухфазная

Системы газ жидкость

Системы жидкость жидкость

Системы трехкомпонентные



© 2025 chem21.info Реклама на сайте