Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансмембранный перенос малых молекул

    ТРАНСМЕМБРАННЫЙ ПЕРЕНОС МАЛЫХ МОЛЕКУЛ [c.138]

    Внутренняя мембрана 20-25% всех белков составляют ферменты цепей переноса протонов и электронов и окислительного фосфорилирования. Проницаема лишь для малых молекул (О2, мочевина) и содержит специфические трансмембранные переносчики. [c.115]

    Считается, что клетки животных извлекают энергию из пищи в три этапа. На первом этапе белки, полисахариды и жиры расщепляются в результате внеклеточных реакций на малые молекулы. На втором этапе эти малые молекулы расщепляются в клетках с образованием ацетил-СоА, а также небольшого количества АТР и NADH. Такие реакции - единственные, в которых энергия может выделяться и в отсутствие кислорода. На третьей стадии молекулы ацетил-СоА расщепляются в митохондриях, образуя С02 и атомы водорода, которые связываются с молекулами таких переносчиков, как NADH. Электроны от атомов водорода переходят по сложной цепи переносчиков, что в конечном счете приводит к восстановлению молекулярного кислорода и образованию воды. Под действием энергии, высвобождающийся на разных стадиях переноса электронов, ионы водорода (Н ) транспортируются из внутреннего пространства митохондрии наружу. Возникающий в результате трансмембранный электрохимический градиент протонов во внутренней митохондриальной мембране поставляет энергию для синтеза основного количества молекул АТР клетки. [c.94]


    Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или фуппы родственных молекул. В клетках существуют также способы пфеноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5). [c.379]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]



Смотреть страницы где упоминается термин Трансмембранный перенос малых молекул: [c.49]   
Смотреть главы в:

Биохимия человека Т.2 -> Трансмембранный перенос малых молекул

Биохимия человека Том 2 -> Трансмембранный перенос малых молекул




ПОИСК





Смотрите так же термины и статьи:

Трансмембранный перенос



© 2025 chem21.info Реклама на сайте