Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос через внутреннюю митохондриальную мембрану

Рис. 107. Упрощенная схема переноса электронов, сопряже -ного с накоплением ионов водорода в межмембранном пространстве, от субстрата на кислород через цепь переноса электронов внутренней митохондриальной мембраны (по Митчеллу). Рис. 107. Упрощенная <a href="/info/970746">схема переноса электронов</a>, <a href="/info/1603360">сопряже</a> -ного с <a href="/info/766275">накоплением ионов</a> водорода в <a href="/info/101022">межмембранном пространстве</a>, от субстрата на <a href="/info/1030270">кислород через</a> <a href="/info/511072">цепь переноса электронов</a> внутренней митохондриальной мембраны (по Митчеллу).

Рис. 8-29. Импорт белков в митохондрии. N-концевой сигнальный пептид белка-предшественника распознается рецептором, который, как полагают, расположен во внешней мембране. Белок переносится через обе митохондриальные мембраны в спепиальных точках контакта. Для начала этого процесса необходим электрохимический градиент по сторонам внутренней мембраны. В матриксе сигнальный пептид отрезается Рис. 8-29. Импорт белков в митохондрии. N-концевой <a href="/info/150353">сигнальный пептид</a> <a href="/info/199849">белка-предшественника</a> распознается рецептором, который, как полагают, расположен во внешней мембране. <a href="/info/1901136">Белок переносится через</a> обе <a href="/info/101059">митохондриальные мембраны</a> в <a href="/info/1788797">спепиальных</a> <a href="/info/1868773">точках контакта</a>. Для начала <a href="/info/1757866">этого процесса</a> необходим <a href="/info/191333">электрохимический градиент</a> по сторонам <a href="/info/101045">внутренней мембраны</a>. В матриксе <a href="/info/150353">сигнальный пептид</a> отрезается
    Хемиосмотическая гипотеза, сформулированная английским биохимиком Питером Митчеллом, исходит из совершенно иного, нового принципа. Постулируется, что перенос электронов сопровождается выкачиванием ионов Низ матрикса через внутреннюю митохондриальную мембрану в наружную водную среду. Вследствие этого между двумя сторонами внутренней митохондриальной мембраны возникает градиент концентрации ионов Н (трансмембранный градиент). Синтез АТР, требующий затраты энергии, осуществляется именно за счет осмотической энергии, присущей этому градиенту. Можно думать, что именно хемиосмотическая теория наиболее точно отражает организуюхций принцип окислительного фосфорилирования. Рассмотрим некоторые характерные особенности этого процесса, свидетельствующие в пользу хемиосмотической гипотезы. [c.528]

    На рис. 15 приведена упрощенная схема одного из участков внутренней митохондриальной мембраны. Ее основу образует фосфолипидный бислой, в который встроены различные компоненты цепей переноса электронов, молекулы АТФ-аз, а также белки, участвующие в транспорте ионов через сопрягающие мембраны. [c.56]

    Прохождение электронов по цепи переносчиков может вызывать в белках конформационные изменения, которые могут приводить к синтезу высокоэнергетических промежуточных соединений. В пользу этого представления говорят хотя и малые, но отчетливо наблюдаемые конформационные изменения цитохрома с в ходе окисления и восстановления [12]. Тесная ассоциация одного белка с другим, характерная для внутренней митохондриальной мембраны, указывает на возможность передачи через один или несколько белков любого конформационного изменения, индуцированного на участке переноса электронов, на далеко отстоящий участок (например, на фактор сопряжения Fi), где может происходить образование АТР. [c.414]


    Внутренняя мембрана митохондрий отличается необычно высоким содержанием белка-в весовом выражении в ней примерно 70% белка и 30% липидов. Многие из этих белков относятся к цепи переноса электронов, поддерживающей протонный градиент на внутренней мембране. Другой важный компонент белковой природы-фермент, катализирующий синтез АТР. Этот фермент, АТР-синтетаза, представляет собой большой белковый комплекс, через который протоны перетекают обратно в матрикс по электрохимическому градиенту. Подобно турбине, этот белковый комплекс превращает одну форму энергии в другую, образуя АТР из ADP и неорганического фосфата в митохондриальном матриксе в ходе реакции, сопряженной с переходом протонов в матрикс (рис. 9-21). [c.20]

    Существует несколько гипотез, объясняющих механизм сопряжения. Одной из них является хемиосмотическая теория. Цепь транспорта электронов функционирует как протонная (Н+) помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство. Эндоэргический процесс выброса протонов из матрикса возможен за счет экзоэргических окислительно-восстановительных реакций дыхательной цепи. Перенос протонов приводит к возникновению разности концентрации с двух сторон митохондриальной мембраны более высокая концентрация будет снаружи и более низкая - внутри. Митохондрия в результате переходит в энергизованное состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности. [c.177]

    Так, изучая флуоресценцию некоторых меток, зависящую от pH среды (умбеллиферон, ретинол), можно определить некоторые параметры процессов переноса зарядов через фотосинтетические, митохондриальные и бактериальные мембраны. Было также установлено, что изменения флуоресценции 1-анилинонафталин-8-сульфоната (АНС), введенного, например, в суспензию митохондрий, связаны с потенциалом, возникающим на их сопрягающих мембранах. Измеренйя флуоресценции АНС дают информацию об образовании трансмембранных электрических полей в различных системах, моделирующих биологические мембраны и протекающие в них процессы. Если направление электрического поля на мембране таково, что внутри митохондрий, субмитохондриальных частиц или липосом возникает знак минус , то флуоресценция АНС уменьшается. Перезарядка мембраны приводит к увеличению флуоресценции АНС. Эти изменения обусловлены перераспределением ионов АНС между внутренним пространством частиц и омывающим их электролитом. [c.119]

    В последнее время появились данные, доказывающие, что креатинфосфат в мышечной ткани (в частности, в сердечной мышце) способен выполнять не только роль как бы депо легкомобилизуемых макроэргических фосфатных групп, но также роль транспортной формы макроэргических фосфатных связей, образующихся в процессе тканевого дыхания и связанного с ним окислительного фосфорилирования. Предложена схема переноса энергии из митохондрий в цитоплазму клетки миокарда (рис. 20.7). АТФ, синтезированный в матриксе митохондрий, переносится через внутреннюю мембрану с участием специфической АТФ—АДФ-транслоказы на активный центр митохондриального изофермента креатинкиназы, который расположен на внешней стороне внутренней мембраны в меж-мембранном пространстве (в присутствии ионов Mg ) при наличии в среде креатина образуется равновесный тройной фермент-субстратный комплекс креатин—креатинкиназа—АТФ—Mg , который затем распадается с образованием креатинфосфата и АДФ —Mg . Креатинфосфат диффундирует в цитоплазму, где используется в миофибриллярной креатинкиназной реакции для рефосфорилирования АДФ, образовавшегося при сокращении. Высказываются предположения, что не только в сердечной мышце, но и в скелетной мускулатуре имеется подобный путь транспорта энергии из митохондрий в миофибриллы. [c.655]

    ЧТО приводит к образованию малата. Малат, несущий восстановительные эквиваленты, полученные от щ1тозольного NADH, проходит через внутреннюю мембрану митохондрии в матрикс-его переносит через мембрану система, транспортирующая дикарбоксилаты. Попав внутрь митохондрии, малат отдает эти восстановительные эквиваленты NAD матрикса в реакции, катализируемой матриксной малатдегидрогеназой. NAD восстанавливается при этом в NADH, который может теперь передавать свои электроны прямо в дыхательную цепь внутренней митохондриальной мембраны. На каждую пару электронов, переданных на кислород, синтезируются три молекулы АТР. Другие компоненты этой челночной системы (рис. 17-26) регенерируют цитозольный оксалоацетат это необходимо для того, чтобы мог начаться новый оборот челночного цикла. [c.538]

    От всех NAD-зависимых реакций дегидрирования восстановительные эквиваленты переходят к митохондриальной NADH-дегидрогеназе, содержащей в качестве простетической группы FMN. Затем через ряд железо-серных центров они передаются на убихинон, который передает электроны цитохрому Ъ. Далее электроны переходят последовательно на цитохромы j и с, а затем на цитохром аа , (цитохромоксидазу), которая содержит медь. Цитохромоксидаза передает электроны на О2. Для того чтобы полностью восстановить Oj с образованием двух молекул HjO, требуются четыре электрона и четыре иона Н. Перенос электронов блокируется в определенных точках ротеноном, антимицином А и цианидом. Процесс переноса электронов сопровождается значительным снижением свободной энергии. В трех участках дыхательной цепи происходит запасание энергии в результате синтеза АТР из ADP и Р . Окислительное фосфорилирование и перенос электронов можно разобщить, воспользовавшись для этого разобщающими агентами или ионофорами, такими, как валиномицин. Для того чтобы могло происходить окислительное фосфорилирование, внутренняя митохондриальная мембрана должна сохранять свою целостность и должна быть непроницаемой для ионов Н и некоторых других ионов. Перенос электронов сопровождается выталкиванием ионов Н из митохондрий. Согласно хемиосмотической гипотезе (одной из трех гипотез, предложенных для объяснения механизма окислительного фосфорилирования), перенос электронов создает между двумя сторонами внутренней митохондриальной мембраны градиент концентрации ионов Н , при котором их концентрация снаружи выше, чем внутри. Предполагается, что именно этот градиент служит движущей силой синтеза АТР, когда ионы Н, возвращающиеся из цитозоля в матрикс, проходят через [c.545]


    И. Окислительное фосфорилирование в инвертированных субмитохондриальных пузырьках. Согласно хемиосмотической гипотезе, во время переноса электронов из интактных митохондрий откачиваются наружу ионы Н, что приводит к возникновению градиента pH между двумя сторонами митохондриальной мембраны. Этот градиент pH заключает в себе энергию, благодаря которой ионы Н перемещаются в обратном" направлении-из окружающей среды в митохондриальный матрикс. При этом ионы Н проходят через молекулы FoFi-АТРазы, чем обеспечивается синтез АТР из ADP и Р,. Удалось показать, что полученные из внутренней митохондриальной мембраны инвертированные пузырьки, у которых FoFi-АТРазные головки обращены наружу (рис. 17-15), тоже способны к окислительному фосфорилированию. [c.549]

    Дыхательная цепь внутренней митохондриальной мембраны содержит три главных ферментных комплекса, участвующих в переносе электронов с NADH на О2. Если любой из этих комплексов выделить и встроить в мембрану липосомы, то можно продемонстрировать способность его переносить через эту мембрану протоны одновременно с транспортом электронов. В естественной мембране цепь переноса электронов дополняют мобильные переносчики - убихинон и цитохром с, передвигающиеся, подобно челнокам, от одного ферментного комплекса к другому и обратно. Путь электронов в этой цепи можно представить следующей схемой NADH NADH-дегидрогеназный комплекс убихинон комплекс Ь-С] цитохром с цитохромоксидазный комплекс - молекулярный кислород (О2). [c.459]

    АТР и ADP не могут диффундировать свободно через внутреннюю митохондриальную мембрану. Переход этих высокозаря-женных молекул через этот барьер оказывается возможным благодаря наличию специфического переносчика. Интересная особенность переноса - сопряжение токов АТР и ADP. ADP поступает в митохондриальный матрикс только при условии вы-хода АТР и наоборот. Этот сопряженный поток АТР и ADP представляет собою пример облегченной обменной диффузии. Он опосредуется АТР-ADP—транс лока-зой, димером, состоящим из идентичных субъединиц с мол. массой 29 кДа каждая. Транслоказа имеется в большом количестве во внутренней митохондриальной мембране, составляя около 6% общего белка. На цитоплазматическую сторону мембраны транспортируется предпочтительно ADP. Именно этим отчасти и объясняется тот факт, что соотношение [ATP]/[ADP] [Pj на той стороне мембраны, которая обращена к цитоплазме, в 10 раз выше, чем на стороне, обращенной к матриксу. Сопряженный транспорт АТР и ADP транслоказой, вероятно, индуцируется протонным градиентом через внутреннюю митохондриальную мембрану. ATP-ADP—транслоказа специфически ингибируется очень низкими концентрациями атрактилозида, растительного гли-к 03 и да, или бонгкрековой кислоты, антибиотика из плесени. Вскоре после добавления этих ингибиторов окислительное фосфорилирование прекращается, поскольку поступления ADP внутрь митохондрии больше не происходит. [c.86]

    Схема хемиосмотического сопряжения Митчелла показана на-рис. 13.7. Сопрягающей системой является мембрана. Донор водорода АНа (например, аскорбат) окисляется переносчиком электронов (например, цитохромом с) у внешней стороны мембраны,-Два электрона переносятся через мембрану по дыхательной цепп и посредством цитохромоксидазы передаются акцептору водорода В, т. е. кислороду. Акцептор присоединяет два протона из внутренней фазы митохондриального матрикса. Создается градиент концентраций протонов — их избыток во внешней и недостаток во внутренней жидкой фазе. Вследствие этого пронсходит перенос протонов через мембрану в противоположном направлении, в результате чего и реализуется фосфорилирование. Синтез одной молекулы АТФ приводит к поглощению днух протонов из внешней фазы и выделению двух протонов в матрикс. Митохондриальная мембрана работает как топливный элемент, в котором, разность электрохимических потенциалов создается за счет окислительно-восстановительного процесса. [c.433]

    В мембране эритроцита, например, содержится около 20 различньк белков, а во внутренней митохондриальной мембране их значительно больше. Некоторые белки в мембранах обладают ферментативной активнос гью, другие обеспечивают связьшанне и перенос молекулП. полярных веществ через мембраны. Мембранные белки различаются по ха- рактеру св и с мембранными структу- рами. Одни белки, называемые внешний ми, или периферическими, непрочно связаны с поверхностью мембраны другие, называемые внутренними, или интегральными,-потружты внутрь мембраны и даже могут пронизывать ее насквозь (рис. 12-17). Периферические белки обычно легко экстрагируются из мембран, тогда как интегральные белки могут быть вьщелены только при помощи де- [c.343]

    Именно те свойства митохондрий, которые мы только что рассмотрели, послужили основой для разработки хемиосмотической гипотезы (рис. 17-19). Согласно этой гипотезе, функция переноса электронов, происходящего во внутренней митохондриальной мембране, заключается в том, чтобы откачивать ионы Н из матрикса митохондрии в наружную среду и таким путем создавать между двумя водными фазами, которые разделяет эта мембрана, градиент концентрации ионов Н с более кислым значением pH снаружи. Такой градиент, при котором концентрация ионов Н снаружи выше, чем внутри митохондрии, обладает потенциальной энергией (разд. 14.16). Хемиосмотическая гипотеза постулирует далее, что ионы Н , выведенные наружу за счет энергии переноса электронов, снова устремляются внутрь, в митохондриальный матрикс, через специальные каналы, или поры , для этих ионов в молекулах FoFi-АТРазы. В этом случае они перемещаются по градиенту концентрации и во время их перехода через молекулы АТРазы выделяется свободная энергия. Именно эта энергия и служит движущей силой для сопряженного синтеза АТР из ADP и фосфата. [c.531]

    Если охлажденные митохондрии, содержащие частично перенесенные промежуточные продукты, опять нагреть, то перенос быстро завершается (рис. 8-28), даже если мембранный потенциал на внутренней мембране сброшен. По-видимому, мембранный потенциал необходим шшь для начальной стадии переноса белка через мембрану, которая происходит даже при низкой температуре Дальнейшие события, однако, требуют наличия АТР. Эти факты означают, что в норме перенос проходит в два этапа 1) управляемое электрически проникновение сигнального пептрша и связанных с ним последовательностей сквозь обе митохондриальные мембраны и 2) продвижение остатка пепи в митохондриальный матрикс, требующее гидролиза АТР и физиологических температур (рис. 8-29). [c.31]

    Внутренняя бйслойная митохондриальная мембрана свободно проницаема для незаряженных небольших молекул, таких, как кислород, вода, СОг и NH3, а также для монокарбоновых кислот, таких, как 3-гидроксимасляная, ацетоуксусная и уксусная. Длинноцепочечные жирные кислоты транспортируются в митохондрии с помощью карнитиновой системы (см. рис. 23.1) имеется также специальный переносчик пирувата, функционирующий по принципу сим-порта, использующего градиент протонов с наружной на внутреннюю поверхность митохондриальной мембраны. Транспорт дикарбоксилатных и три-карбоксилатных анионов, а также аминокислот осуществляется с помощью специальных систем переноса, облегчающих их прохождение через мембрану. Монокарбоновые кислоты легче проникают через мембрану вследствие меньшей степени их диссоциации недиссоциированная форма кислоты имеет большую растворимость в липидах, и, как полагают, именно в этой форме монокарбоновые кислоты проходят через липидную мембрану. [c.138]

    Изучение проницаемости внутренней мембраны митохондрий для ионов Са + привело к представлению о существовании в митохондриях специфической транспортной системы. Ее активность ингибируется низкими концентрациями рутениевого красного, катионов семейства лантапидов и гексаминокобальта. Транспорт Са + специфически ингибируется антителами на митохондриальный гликопротеин, который может быть легко экстрагирован из митохондрий с помощью осмотического щока в присутствии ЭДТА. Иммунологические данные не оставляют сомнений в участии этого гликопротеина (м. м. 33 000 Да) в связывании и (или) переносе Са + через мембрану. Система транспорта Са + в митохондриях катализирует также зависимое от энергии поглощение других двухвалентных катионов, но ее специфичность па- [c.453]


Смотреть страницы где упоминается термин Перенос через внутреннюю митохондриальную мембрану: [c.529]    [c.31]    [c.43]    [c.31]    [c.137]    [c.79]    [c.82]    [c.143]    [c.423]    [c.28]    [c.139]    [c.226]    [c.154]    [c.221]    [c.423]    [c.29]    [c.226]   
Смотреть главы в:

Основы биохимии в 3-х томах Т 1 -> Перенос через внутреннюю митохондриальную мембрану




ПОИСК





Смотрите так же термины и статьи:

Мембраны внутренние



© 2025 chem21.info Реклама на сайте